
CS 61B Objects and Arrays
Fall 2021 Exam Prep Discussion 4: September 13, 2021

1 Give em the ’Ol Switcheroo
For each function call in the main method, write out the x and y values of both

foobar and baz after executing that line. (Spring ’15, MT1)

1 public class Foo {

2 public int x, y;

3

4 public Foo (int x, int y) {

5 this.x = x;

6 this.y = y;

7 }

8 public static void switcheroo (Foo a, Foo b) {

9 Foo temp = a;

10 a = b;

11 b = temp;

12 }

13 public static void fliperoo (Foo a, Foo b) {

14 Foo temp = new Foo(a.x, a.y);

15 a.x = b.x;

16 a.y = b.y;

17 b.x = temp.x;

18 b.y = temp.y;

19 }

20 public static void swaperoo (Foo a, Foo b) {

21 Foo temp = a;

22 a.x = b.x;

23 a.y = b.y;

24 b.x = temp.x;

25 b.y = temp.y;

26 }

27

28 public static void main (String[] args) {

29 Foo foobar = new Foo(10, 20);

30 Foo baz = new Foo(30, 40);

31 switcheroo(foobar, baz); foobar.x: ___ foobar.y: ___ baz.x: ___ baz.y: ___

32 fliperoo(foobar, baz); foobar.x: ___ foobar.y: ___ baz.x: ___ baz.y: ___

33 swaperoo(foobar, baz); foobar.x: ___ foobar.y: ___ baz.x: ___ baz.y: ___

34 }

35 }

2 Objects and Arrays

Solution:

line 34: foobar.x: 10 foobar.y: 20 baz.x: 30 baz.y: 40

line 35: foobar.x: 30 foobar.y: 40 baz.x: 10 baz.y: 20

line 36: foobar.x: 10 foobar.y: 20 baz.x: 10 baz.y: 20

Here is a video walkthrough of the solutions for this problem.

Explanation:

switcheroo: Note that switcheroo assigns a local variable temp to a, but never

mutates objects, e.g. by reassigning a.x. This means that all switcheroo does is

move around its local pointers to temp, a, and b; nothing in foobar or baz is actually

changed.

fliperoo: Here, a points to foobar and b points to baz. temp refers to an object

with the same initial x and y values as a, which are 10 and 20 respectively. Lines

15 and 16 change foobar to have {x: 30, y: 40}. Then, lines 17 and 18 allow baz

to take on the same x and y values as temp, which are {x: 10, y: 20}.

swaperoo: In swaperoo, instead of creating a new object, we simply point temp

to the same object as a. In lines 22 and 23, we override foobar’s x and y values

to become the same as baz’s: {x: 10, y: 20}. In line 24 and 25, we assign baz’s

x and y values to be equal to temp’s. But remember, temp is pointing to the same

object as a, which points to foobar, and which we just modified to have {x: 10,

y: 20}. Thus, baz does not change.

https://youtu.be/QrOAp7ovtAM

Objects and Arrays 3

2 Flatten
Write a method flatten that takes in a 2-D array x and returns a 1-D array that

contains all of the arrays in x concatenated together.

For example, flatten({{1, 2, 3}, {}, {7, 8}}) should return {1, 2, 3, 7, 8}.

(Summer 2016 MT1)

1 public static int[] flatten(int[][] x) {

2 int totalLength = 0;

3

4 for (____________________________________) {

5

6 ___

7 }

8

9 int[] a = new int[totalLength];

10 int aIndex = 0;

11 for (____________________________________) {

12

13 ___

14

15 ___

16

17 ___

18

19 ___

20 }

21

22 return a;

23 }

4 Objects and Arrays

Solution:

1 public static int[] flatten(int[][] x) {

2 int totalLength = 0;

3 for (int[] arr: x) {

4 totalLength += arr.length;

5 }

6 int[] a = new int[totalLength];

7 int aIndex = 0;

8 for (int[] arr: x) {

9 for (int value: arr) {

10 a[aIndex] = value;

11 aIndex++;

12 }

13 }

14 return a;

15 }

Alternate Solutions:

1 public static int[] flatten(int[][] x) {

2 int totalLength = 0;

3 for (int[] arr: x) {

4 totalLength += arr.length;

5 }

6 int[] a = new int[totalLength];

7 int aIndex = 0;

8 for (int[] arr: x) {

9 System.arraycopy(arr, 0, a, aIndex, arr.length);

10 aIndex += arr.length;

11 }

12 return a;

13 }

14 public static int[] flatten(int[][] x) {

15 int totalLength = 0;

16 for (int i = 0; i < x.length; i++) {

17 totalLength += x[i].length;

18 }

19 int[] a = newint[totalLength];

20 int aIndex = 0;

21 for (int i = 0; i < x.length; i++) {

22 for (int j = 0; j < x[i].length; j++) {

23 a[aIndex] = x[i][j];

24 aIndex++;

25 }

26 }

27 return a;

28 }

Objects and Arrays 5

Here is a video walkthrough of the solutions for this problem.

Explanation: All these solutions do essentially the same thing. In Java, an array’s

length must be known before we can instantiate it–as such, we have to loop over all

inner arrays to get the totalLength of our flattened array. Then, we iterate over

the elements of x, filling a as we go. aIndex keeps track of where we are in the a

array.

https://www.youtube.com/watch?v=K6qf-yrGI5Q&list=PLHnsju1DjvZNsYPXPHw758Tmlxy8s_tPF&index=3&pp=sAQB

6 Objects and Arrays

3 IntList to Array
For this problem we will implement a version of arraycopy that copies elements from

an IntList into an array of ints. As a reminder, here is the arraycopy method:

1 System.arraycopy(Object src, int sourcePos, Object dest, int destPos, int len)

System.arraycopy copies len elements from array src (starting at index source)

to array destArr (starting from index dest).

To simplify things, let’s restrict ourselves to using only int[], and assume that

srcList and destArr are not null. Additionally, assume that sourcePos, destPos,

and len will not cause an IndexOutOfBoundsException to be thrown.

For example, let IntList L be (1 -> 2 -> 3 -> 4 -> 5) and int[] arr be an empty

array of length 3. Calling arrayCopyFromIntList(L, 1, arr, 0, 3) will result in

arr={2, 3, 4}.

1 /** Works just like System.arraycopy, except srcList is of type IntList. */

2 public static void arrayCopyFromIntList(IntList srcList, int sourcePos,

3 int[] destArr, int destPos, int len) {

4

5 for (____________; ____________; ____________) {

6

7 ________________________ = ____________________________________;

8 }

9

10 for (____________; ____________; ____________) {

11

12 ________________________ = ____________________________________;

13

14 ________________________ = ____________________________________;

15

16 }

17 }

Solution:

1 /** Works just like System.arraycopy, except srcList is of type IntList. */

2 public static void arrayCopyFromIntList(IntList srcList, int sourcePos,

3 int[] destArr, int destPos, int len) {

4 for (int i = 0; i < sourcePos; i += 1) {

5 srcList = srcList.tail;

6 }

7

8 for (int i = destPos; i < destPos + len; i += 1) {

9 destArr[i] = srcList.head;

10 srcList = srcList.tail;

11 }

12 }

Objects and Arrays 7

Here is a video walkthrough of the solutions for this problem. Explanation:

arrayCopyFromIntList should copy over len items from our source IntList to our

destination array, starting at sourcePos in the source IntList and destPos in the

destination array.

In the first loop, we move along the srcList to get the correct starting position. In

the second loop, we copy over len items from the srcList, starting at destpos in

the array.

https://www.youtube.com/watch?v=K6qf-yrGI5Q&list=PLHnsju1DjvZNsYPXPHw758Tmlxy8s_tPF&index=3&pp=sAQB

8 Objects and Arrays

4 Static Books
Suppose we have the following Book and Library classes.

class Book {

public String title;

public Library library;

public static Book last = null;

public Book(String name) {

title = name;

last = this;

library = null;

}

public static String lastBookTitle() {

return last.title;

}

public String getTitle() {

return title;

}

}

class Library {

public Book[] books;

public int index;

public static int totalBooks = 0;

public Library(int size) {

books = new Book[size];

index = 0;

}

public void addBook(Book book) {

books[index] = book;

index++;

totalBooks++;

book.library = this;

}

}

(a) For each modification below, determine whether the code of the Library and

Book classes will compile or error if we only made that modification, i.e. treat

each modification independently.

1. Change the totalBooks variable to non static

2. Change the lastBookTitle method to non static

3. Change the addBook method to static

4. Change the last variable to non static

5. Change the library variable to static

Solution:

Here is a video walkthrough of the solutions for this part and the next.

1. Compile

totalBooks is only used inside of a nonstatic function, so changing it to

nonstatic would not cause compilation errors (although note that it no

longer counts the total number of books correctly).

2. Compile

Both static and nonstatic methods can access static variables, so changing

lastBookTitle to be static would still allow it to access last.title.

3. Error

Static methods cannot access instance variables, so changing addBook to

be static would cause it to be unable to find the books or index variables.

https://youtu.be/AGDAefmaPLc

Objects and Arrays 9

4. Error

Again, static methods cannot access instance variables, so changing last

to be static would cause lastBookTitle to fail.

5. Compile

Constructors are allowed to modify static variables; similarly, instances

of a class can access that class’s static variables. Thus, changing library

to be static would not affect the Book constructor or book.library in

addBook.

10 Objects and Arrays

(b) Using the Book and Library classes from before, write the output of the main

method below. If a line errors, put the precise reason it errors and continue

execution.

1 public class Main {

2 public static void main(String[] args) {

3 System.out.println(Library.totalBooks); _____________________

4 System.out.println(Book.lastBookTitle()); _____________________

5 System.out.println(Book.getTitle()); _____________________

6

7 Book goneGirl = new Book("Gone Girl");

8 Book fightClub = new Book("Fight Club");

9

10 System.out.println(goneGirl.title); _____________________

11 System.out.println(Book.lastBookTitle()); _____________________

12 System.out.println(fightClub.lastBookTitle()); _____________________

13 System.out.println(goneGirl.last.title); _____________________

14

15 Library libraryA = new Library(1);

16 Library libraryB = new Library(2);

17 libraryA.addBook(goneGirl);

18

19 System.out.println(libraryA.index); _____________________

20 System.out.println(libraryA.totalBooks); _____________________

21

22 libraryA.totalBooks = 0;

23 libraryB.addBook(fightClub);

24 libraryB.addBook(goneGirl);

25

26 System.out.println(libraryB.index); _____________________

27 System.out.println(Library.totalBooks); _____________________

28 System.out.println(goneGirl.library.books[0].title); _____________________

29 }

30 }

Solution:

1 public class Main {

2 public static void main(String[] args) {

3 System.out.println(Library.totalBooks); 0

4 System.out.println(Book.lastBookTitle()); Error, NullPointerException

5 System.out.println(Book.getTitle()); Error, does not compile

6

7 Book goneGirl = new Book("Gone Girl");

8 Book fightClub = new Book("Fight Club");

9

10 System.out.println(goneGirl.title); Gone Girl

11 System.out.println(Book.lastBookTitle()); Fight Club

Objects and Arrays 11

12 System.out.println(fightClub.lastBookTitle()); Fight Club

13 System.out.println(goneGirl.last.title); Fight Club

14

15 Library libraryA = new Library(1);

16 Library libraryB = new Library(2);

17 libraryA.addBook(goneGirl);

18

19 System.out.println(libraryA.index); 1

20 System.out.println(libraryA.totalBooks); 1

21

22 libraryA.totalBooks = 0;

23 libraryB.addBook(fightClub);

24 libraryB.addBook(goneGirl);

25

26 System.out.println(libraryB.index); 2

27 System.out.println(Library.totalBooks); 2

28 System.out.println(goneGirl.library.books[0].title); Fight Club

29 }

30 }

Explanation:

Line 3: The static variable totalBooks is initialized to 0.

Line 4: We haven’t created any books yet, so the Book constructor has never

been called, and last is null. When we attempt to call lastBookTitle, we ac-

cess the title property of a null object, which results in a NullPointerException.

Line 5: You cannot call a nonstatic method using the class name; only in-

stances of the class can call their instance methods.

Line 10: The string "Gone Girl" was passed into the constructor of the

goneGirl object, so its title is Gone Girl (printing removes quotes).

Line 11: Whenever a new book is created, the static variable last points to

it. Thus, last points to the most recently created book, fightClub.

Line 12: Instances of a class can access static variables.

goneGirl.last is the same as Book.last, which is fightClub.

Line 19: index gets incremented each time we call addBook, so after adding

goneGirl to libraryA, its index is 1.

Line 20: totalBooks gets incremented each time we call addBook, so after

adding goneGirl to libraryA, its totalBooks is 1. (Remember, instances can

access a class’s static variables).

Line 26: index gets incremented each time we call addBook, and it is an

instance variable, so each library has its own copy of index. After adding

goneGirl and fightClub to libraryB, its index is 2.

Line 27: totalBooks is a static variable, so on line 22, totalBooks gets reset

to 0 for the entire class. Then, it gets incremented twice in addBook for a total

of 2.

Line 28: In addBook, we set book.library equal to the library to which

that book was most recently added to. goneGirl was most recently added

12 Objects and Arrays

to libraryB, so its library is libraryB. Each library has its own books array

which tracks books from oldest to newest addition. The first book added to

libraryB was fightClub.

	Give em the 'Ol Switcheroo
	Flatten
	IntList to Array
	Static Books

