
CS 61B Inheritance
Fall 2021 Exam Prep Discussion 5: September 20, 2021

Note this worksheet is very long and is not expected to be finished in an hour.

1 Athletes
Suppose we have the Person, Athlete, and SoccerPlayer classes defined below.

1 class Person {

2 void speakTo(Person other) { System.out.println("kudos"); }

3 void watch(SoccerPlayer other) { System.out.println("wow"); }

4 }

5

6 class Athlete extends Person {

7 void speakTo(Athlete other) { System.out.println("take notes"); }

8 void watch(Athlete other) { System.out.println("game on"); }

9 }

10

11 class SoccerPlayer extends Athlete {

12 void speakTo(Athlete other) { System.out.println("respect"); }

13 void speakTo(Person other) { System.out.println("hmph"); }

14 }

(a) For each line below, write what, if anything, is printed after its execution.

Write CE if there is a compiler error and RE if there is a runtime error. If a

line errors, continue executing the rest of the lines.

1 Person itai = new Person();

2

3 SoccerPlayer shivani = new Person();

4

5 Athlete sohum = new SoccerPlayer();

6

7 Person jack = new Athlete();

8

9 Athlete anjali = new Athlete();

10

11 SoccerPlayer chirasree = new SoccerPlayer();

12

13 itai.watch(chirasree);

14

15 jack.watch(sohum);

16

17 itai.speakTo(sohum);

18

19 jack.speakTo(anjali);



2 Inheritance

20

21 anjali.speakTo(chirasree);

22

23 sohum.speakTo(itai);

24

25 chirasree.speakTo((SoccerPlayer) sohum);

26

27 sohum.watch(itai);

28

29 sohum.watch((Athlete) itai);

30

31 ((Athlete) jack).speakTo(anjali);

32

33 ((SoccerPlayer) jack).speakTo(chirasree);

34

35 ((Person) chirasree).speakTo(itai);

Solution: Here is a video walkthrough of the solution.

Person itai = new Person();

SoccerPlayer shivani = new Person(); // CE

Athlete sohum = new SoccerPlayer();

Person jack = new Athlete();

Athlete anjali = new Athlete();

SoccerPlayer chirasree = new SoccerPlayer();

itai.watch(chirasree); // wow

jack.watch(sohum); // CE

itai.speakTo(sohum); // kudos

jack.speakTo(anjali); // kudos

anjali.speakTo(chirasree); // take notes

sohum.speakTo(itai); // hmph

chirasree.speakTo((SoccerPlayer) sohum); // respect

sohum.watch(itai); // CE

sohum.watch((Athlete) itai); // RE

((Athlete) jack).speakTo(anjali); // take notes

((SoccerPlayer) jack).speakTo(chirasree); // RE

((Person) chirasree).speakTo(itai); // hmph

Explanation:

Line 3: Person is a superclass of SoccerPlayer, so it can’t be assigned to

a variable of type SoccerPlayer. (In general, an object can be assigned to a

variable that is the same class or a superclass of it).

Line 13: itai has the same static and dynamic type (Person) and Person.watch

is allowed to take in a SoccerPlayer argument, so we use that method and print

wow.

Line 15: jack has static type Person and dynamic type Athlete. sohum has

static type Athlete (we only care about the static type of arguments). During

compile time, we choose Person.watch, which can only take in a SoccerPlayer.

https://youtu.be/vS7ZCJbwyZo


Inheritance 3

Athlete is a superclass of SoccerPlayer, so this method cannot take in an

Athlete and a compilation error results.

Line 17: sohum has static type Athlete, and itai has static and dynamic type

Person, so we must use Person.speakTo. Person.speakTo takes in a Person, a

superclass of sohum’s type, so this method works.

Line 19: jack has static type Person, dynamic type Athlete. anjali has

static type Athlete. During compile time, we choose the method signature

speakTo(Person other). During runtime, we check the class of jack’s dyan-

mic type. Athlete does not have a method matching our earlier signature, so

we use our earlier method and print kudos.

Line 21: anjali has static and dynamic type Athlete. chirasree has static

type SoccerPlayer. The only method we can use is Athlete.speakTo. This is

fine because SoccerPlayer is a subclass of Athlete, so we print take notes.

Line 23: sohum has static type Athlete and dynamic type SoccerPlayer. itai

has static type Person. During compilation, we first go to Athlete. However,

Athlete.speakTo cannot take in a Person, so we go to it’s parent, Person, and

choose the signature speakTo(Person other). Then, during runtime, we check

sohum’s dynamic type, SoccerPlayer. SoccerPlayer.speakTo(Person other)

matches our signature, so we use that method and print hmph.

Line 25: chirasree has static and dynamic type SoccerPlayer. We call the

SoccerPlayer.speakTo method with an argument of type SoccerPlayer, which

selects the most specific signature possible–SoccerPlayer.speakTo(Athlete

other), printing respect.

Line 27: sohum has static type Athlete and dynamic type SoccerPlayer.

itai has static type Person. During compile time, we go to Athlete, but

Athlete.watch(Athlete other) cannot handle an argument of type Person,

so we go to its parent. However, Person.watch(SoccerPlayer other) also can-

not handle an argument of type Person, so this results in a compilation error.

Line 29: The compiler ”trusts” that the cast of itai to Athlete is correct;

however, during runtime, casting a Person to an Athlete fails, resulting in a

runtime exception.

Line 31: By casting, we tell the compiler to view jack’s static type as Athlete.

Thus, during compilation, we choose the signature Athlete.speakTo(Athlete

other). Then, during runtime, jack has dynamic type Athlete, so the cast is

valid, and we print take notes.

Line 33: Jack has dynamic type Athlete, which cannot be downcast to a

subclass SoccerPlayer.

Line 35: During compilation, we treet chirasree as a Person and choose the

method signature speakTo(Person other). Then, during runtime, we see that

chirasree has dynamic type SoccerPlayer, so we choose the SoccerPlayer.speakTo(Person

other) method that matches our earlier signature, and print hmph.

(b) You may have noticed that jack.watch(sohum) produces a compile error. In-

terestingly, we can resolve this error by adding casting! List two fixes that

would resolve this error. The first fix should print wow. The second fix should

print game on. Each fix may cast either jack or sohum.



4 Inheritance

1.

2.

Solution: Here is a video walkthrough of the solutions for this part and the

next.

1. To print wow, we can cast sohum as a SoccerPlayer, resulting in the

function call jack.watch((SoccerPlayer) sohum);

2. To print game on, we can cast jack as an Athlete, resulting in the func-

tion call ((Athlete) jack).watch(sohum);

(c) Now let’s try resolving as many of the remaining errors from above by adding

or removing casting! For each error that can be resolved with casting, write

the modified function call below. Note that you cannot resolve a compile error

by creating a runtime error! Also note that not all, or any, of the errors may

be resolved.

Solution:

jack.speakTo(chirasree);

Explanation: This resolves the casting error on line 33. jack has static type

person, and Person.speakTo(Person other) can handle an argument of type

SoccerPlayer, so no compilation errors are produced either.

https://youtu.be/mW9lO7-utLw


Inheritance 5

2 Containers
a) (1 Points). Suppose that we have the Container abstract class below, with the

abstract method pour and the method drain. Implement the method drain so that

all the liquid is drained from the container, i.e. amountFilled is set to 0. Return

true if any liquid was drained, and false otherwise. In other words, return true if

and only if there is liquid in the container prior to the function being called. You

may add a maximum of 5 lines of code. Note that the staff solution uses 3. You

may only add code to the drain method. (Summer 2021 MT1)

1 public abstract class Container {

2 /* Keeps track of the total amount of liquid in the container */

3 public int amountFilled;

4

5 public boolean drain() {

6

7

8

9

10

11 } // You may use at most 5 lines of code, i.e. this bracket should be on line 11 or earlier.

12

13 abstract int pour(int amount);

14 }

Solution: Here is a video walkthrough of the solution.

1 public abstract class Container {

2 /* Keeps track of the total amount of liquid in the container */

3 public int amountFilled;

4

5 public boolean drain() {

6 boolean answer = amountFilled > 0;

7 amountFilled = 0;

8 return answer;

9 }

10

11 abstract int pour(int amount);

12 }

b) (1.5 Points). Finish implementing the WaterBottle class so that it is a

Container. You should only add code to the blanks, i.e. fill in the pour method

and the class signature.

As stated in the Container class, the pour method should pour amount into the

container and return the amount of the excess liquid, or 0 if there is no excess. For

instance, suppose we have a WaterBottle w with capacity 10 and amountFilled 5.

Then, if we execute w.pour(7), amountFilled should be set to 10 and 2 should be

returned. Your solution must fit within the blanks provided. You may not need all

https://youtu.be/8MB6tpgj-0E


6 Inheritance

the lines.

1 class WaterBottle ______________ Container {

2 private static final int DEFAULT_CAPACITY = 16;

3

4 /* The capacity of the container, i.e. the maximum amount of liquid the water bottle can hold */

5 private int capacity;

6

7 WaterBottle() {

8 this(DEFAULT_CAPACITY);

9 }

10 WaterBottle(int capacity) {

11 this.capacity = capacity;

12 this.amountFilled = 0;

13 }

14

15 @Override

16 public int pour(int amount) {

17 _____________________________________;

18 if (_________________________________) {

19 _________________________________;

20 _________________________________;

21 _________________________________;

22 }

23 _____________________________________;

24 }

25 }

Solution: Here is a video walkthrough of the solution.

1 class WaterBottle extends Container {

2 private static final int DEFAULT_CAPACITY = 16;

3

4 /* The capacity of the container, i.e. the maximum amount of liquid the water bottle can hold */

5 private int capacity;

6

7 WaterBottle() {

8 this(DEFAULT_CAPACITY);

9 }

10 WaterBottle(int capacity) {

11 this.capacity = capacity;

12 this.amountFilled = 0;

13 }

14

15 @Override

16 public int pour(int amount) {

17 filled += amount;

18 if (filled > capacity) {

https://youtu.be/45qBd8OtnFo


Inheritance 7

19 int excesss = filled - capacity;

20 filled = capacity;

21 return excesss;

22 }

23 return 0;

24 }

25 }

c) (4 Points). Finally, suppose we have the ContainerList class, with the drainFirst

method as implemented below. Unfortunately, the drainFirst method sometimes

errors!

In order to fix it, you may add code to the ContainerList constructor and the

UnknownContainer class! You may only use 5 lines of code in the ContainerList

constructor and add 4 lines of code to the UnknownContainer class! If you decide

to keep or modify the given line in the ContainerList constructor, it counts as one

of the 5 lines.

Note that, after making your changes, the drainFirst should never error and re-

tain the functionality in the docstring. You may not modify the drainFirst

method! You may use classes from the previous part assuming they are imple-

mented correctly.

Hint: Make sure that, with your fix, the drainFirst method won’t error, even if

the drainFirst method is called many times.

1 class UnknownContainer ___________________ {

2 // TODO

3

4

5

6

7

8 } // You may add at most 4 lines of code to the class above

9 // i.e. the closing bracket should be on line 6 or earlier

10

11 class ContainerList {

12 private Container[] containers;

13

14 ContainerList(Container[] conts) {

15 this.containers = conts; // you may delete, modify, or keep this line

16 // YOUR CODE HERE

17

18

19

20

21

22 } // You may use at most 5 lines of code in the Constructor



8 Inheritance

23 // i.e. the closing bracket should be on line 18 or earlier

24

25 /* Drains the water from the first nonempty container */

26 void drainFirst() {

27 int index = 0;

28 while (!containers[index].drain()) {

29 index += 1;

30 }

31 }

32 }

Solution: Here is a video walkthrough of the solution.

1 class UnknownContainer extends WaterBottle {

2 @Override

3 public boolean drain() {

4 return true;

5 }

6 }

7

8 class ContainerList {

9 private Container[] containers;

10

11 ContainerList(Container[] conts) {

12 containers = new Container[conts.length + 1];

13 for (int i = 0; i < conts.length; i += 1) {

14 containers[i] = conts[i];

15 }

16 // System.arraycopy(conts, 0, containers, 0, conts.length); <- can replace for loop with this

17 containers[conts.length] = new UnknownContainer();

18 }

19

20 /* Drains the first nonempty container */

21 void drainFirst() {

22 int index = 0;

23 while (!containers[index].drain()) {

24 index += 1;

25 }

26 }

27 }

Explanation: drainFirst cannot handle a case with all empty containers–it keeps

incrementing index until it’s out of bounds. The solution is to add a Container

which can always be drained, the UnknownContainer. Thus, we write an UnknownContainer.drain

which always returns true.

However, we can’t just override Container, since this will require you to implement

both drain and pour (which requires more than 4 lines). Instead, we have to extend

WaterBottle.

https://youtu.be/KuawGtEuopo


Inheritance 9

Then, in ContainerList, we add an extra UnknownContainer to the end of the

containers list. However, an array’s size cannot be changed, so we have to copy

conts, then add the last UnknownContainer.



10 Inheritance

3 Challenge: A Puzzle
Consider the partially filled classes for A and B as defined below:

1 public class A {

2 public static void main(String[] args) {

3 ___ y = new ___();

4 ___ z = new ___();

5 }

6

7 int fish(A other) {

8 return 1;

9 }

10

11 int fish(B other) {

12 return 2;

13 }

14 }

15

16 class B extends A {

17 @Override

18 int fish(B other) {

19 return 3;

20 }

21 }

Note that the only missing pieces of the classes above are static/dynamic types!

Fill in the four blanks with the appropriate static/dynamic type — A or B — such

that the following are true:

1. y.fish(z) equals z.fish(z)

2. z.fish(y) equals y.fish(y)

3. z.fish(z) does not equal y.fish(y)

Solution: Here is a video walkthrough of the solutions.

1 public class A {

2 public static void main(String[] args) {

3 A y = new B();

4 B z = new B();

5 }

6 ...

7 }

Explanation: To get to this solution, it’s helpful to write a matrix of possible

static/dynamic types, and eliminate ones that don’t work. First note that because

of (3), y and z cannot both be static type B; otherwise only B.fish(B other) would

ever get called. Also, they cannot both have static type A: method arguments only

check static types, so only A.fish(A other) would ever get called, violating (3).

Since we know A and B must have different static types, let’s try assigning static

https://youtu.be/_V0GYWFADkY


Inheritance 11

type A to y and static type B to z. (z must also have dynamic type B, since an

object’s dynamic type either the same as or a subclass of it’s static type). Checking

the result of y.fish(z), we see that this will choose the method signature fish(B

other) inside A at compile time. However, for z.fish(z), the compiler goes to B

and chooses B.fish(B other). In order for these two method calls to be equal, the

dynamic type of y must be B.

This gives us our final answer: y has static type A, dynamic type B; and z has

static and dynamic type B. We check (2) to make sure this works. z.fish(y) will

go to B first, but since B only has a method for fish(B other), we must go to it’s

superclass and choose fish(A other) in A at compile time. y.fish(y) choose the

same method, A.fish(A other). During runtime, we check the dynamic type of z,

B, which does not have a matching signature, so both these calls return 2 as desired.


	Athletes
	Containers
	Challenge: A Puzzle

