
CS 61B Test Review
Fall 2021 Exam Prep Discussion 6: September 27, 2021

Note this worksheet is very long and is not expected to be finished in an hour.

1 Packages Have Arrived
In the following classes, cross out the lines that will result in an error (either during

compilation or execution). Next to each crossed-out line write a replacement for

the line that correctly carries out the evident intent of the erroneous line.

Each replacement must be a single statement. Change as few lines as possible.

After your corrections, what is printed from running java P2.C5?

1 package P1; Write output here:

2 class C1 {

3 private int a = 1; __________________________

4 protected int b = 2;

5 int c = 3; __________________________

6

7 public static int d() { __________________________

8 return 13;

9 }

10 public void setA(int v) { a = v; }

11 public void setB(int v) { b = v; }

12 public void setC(int v) { c = v; }

13 public int getA() { return a; }

14 public int getB() { return b; }

15 public int getC() { return c; }

16

17 public String toString() {

18 return a + " " + getB() + " " + getC() + " " + d();

19 }

20 }

21 __

22

23 package P1;

24 class C2 extends C1 {

25 public C2() {}

26 public C2(int a, int b, int c) {

27 this.a = a;

28 this.b = b;

29 this.c = c;

30 }

31 public static int d() {

2 Test Review

32 return 14;

33 }

34 public C1 gen() {

35 return new C3();

36 }

37 }

38 ___

39

40 package P1;

41 class C3 extends C2 {

42 private int a = 15;

43 public String toString() {

44 return a + " " + getB() + " " + getC() + " " + d();

45 }

46 }

47 ___

48

49 package P2;

50 class C4 extends C2 {

51 public int getB() {

52 return 2 * b;

53 }

54 public C4(int a, int b, int c) {

55 this.a = a;

56 this.b = b;

57 this.c = c;

58 }

59 public C4(int v) {

60 this.a = this.b = this.c = v;

61 }

62 }

63 ___

64

65 package P2;

66 class C5 {

67 public static void main(String... args) {

68 C1 x = new C1();

69 C2 y = new C4(20, 30, 40);

70 C3 z = y.gen();

71

72 System.out.println(x);

73 System.out.println((P1.C2) y);

74 System.out.println(z);

75 }

76 }

Test Review 3

2 Iterator of Iterators
Implement an IteratorOfIterators which will accept as an argument a List of

Iterator objects containing Integers. The first call to next() should return the

first item from the first iterator in the list. The second call to next() should return

the first item from the second iterator in the list. If the list contained n iterators,

the n+1th time that we call next(), we would return the second item of the first

iterator in the list.

Note that if an iterator is empty in this process, we continue to the next iterator.

Then, once all the iterators are empty, hasNext should return false. For example,

if we had 3 Iterators A, B, and C such that A contained the values [1, 3,

4, 5], B was empty, and C contained the values [2], calls to next() for our

IteratorOfIterators would return [1, 2, 3, 4, 5].

1 import java.util.*;

2 public class IteratorOfIterators ______________________________ {

3

4

5 public IteratorOfIterators(List<Iterator<Integer>> a) {

6

7

8

9

10

11

12

13 }

14

15 @Override

16 public boolean hasNext() {

17

18

19

20

21 }

22

23

24

25 @Override

26 public Integer next() {

27

28

29

30

31 }

32 }

4 Test Review

3 DMS Comparator
Implement the Comparator DMSComparator, which compares Animal instances. An

Animal instance is greater than another Animal instance if its dynamic type is

more specific. See the examples to the right below.

In the second and third blanks in the compare method, you may only use the

integer variables predefined (first, second, etc), relational/equality oper-

ators (==, >, etc), boolean operators (&& and ||), integers, and parentheses.

As a challenge, use equality operators (== or !=) and no relational operators (>, <=,

etc). There may be more than one solution.

class Animal {

int speak(Dog a) { return 1; }

int speak(Animal a) { return 2; }

}

class Dog extends Animal {

int speak(Animal a) { return 3; }

}

class Poodle extends Dog {

int speak(Dog a) { return 4; }

}

Examples:

Animal animal = new Animal();

Animal dog = new Dog();

Animal poodle = new Poodle();

compare(animal, dog) // negative number

compare(dog, dog) // zero

compare(poodle, dog) // positive number

1 public class DMSComparator implements __________________________ {

2

3 @Override

4 public int compare(Animal o1, Animal o2) {

5 int first = o1.speak(new Animal());

6 int second = o2.speak(new Animal());

7 int third = o1.speak(new Dog());

8 int fourth = o2.speak(new Dog());

9

10 if (__) {

11 return 0;

12

13 } else if (___) {

14 return 1;

15 } else {

16 return -1;

17 }

18 }

19 }

Test Review 5

4 Partition
Implement partition, which takes in an IntList lst and an integer k, and de-

structively partitions lst into k IntLists such that each list has the following

properties:

1. It is the same length as the other lists. If this is not possible, i.e. lst cannot

be equally partitioned, then the later lists should be one element smaller.

For example, partitioning an IntList of length 25 with k = 3 would result in

partitioned lists of lengths 9, 8, and 8.

2. Its ordering is consistent with the ordering of lst, i.e. items in earlier in lst

must precede items that are later.

These lists should be put in an array of length k, and this array should be returned.

For instance, if lst contains the elements 5, 4, 3, 2, 1, and k = 2, then a possible

partition (note that there are many possible partitions), is putting elements 5, 3, 2

at index 0, and elements 4, 1 at index 1.

You may assume you have the access to the method reverse, which destructively re-

verses the ordering of a given IntList and returns a pointer to the reversed IntList.

You may not create any IntList instances. You may not need all the lines.

Hint: You may find the % operator helpful.

1 public static IntList[] partition(IntList lst, int k) {

2 IntList[] array = new IntList[k];

3 int index = 0;

4 IntList L = _____________________________________

5 while (L != null) {

6

7 ___

8

9 ___

10

11 ___

12

13 ___

14

15 ___

16

17 ___

18

19 ___

20 }

21 return array;

22 }

	Packages Have Arrived
	Iterator of Iterators
	DMS Comparator
	Partition

