# CS 61B <br> Asymptotics and Bits Fall 2021 <br> Exam Prep Discussion 7: October 4, 2021 

## 1 Asymptotics Introduction

Give the runtime of the following functions in $\Theta$ notation. Your answer should be as simple as possible with no unnecessary leading constants or lower order terms.

```
private void f1(int N) {
    for (int i = 1; i < N; i++) {
        for (int j = 1; j < i; j++) {
            System.out.println("hello tony");
        }
    }
}
\Theta(___)
```

Solution: $\Theta\left(N^{2}\right)$
Explanation: The inner loop does up to $i$ work each time, and the outer loop increments $i$ each time. Summing over each loop, we get that $1+2+3+4+\ldots+N=$ $\Theta\left(N^{2}\right)$.

```
private void f2(int N) {
    for (int i = 1; i < N; i *= 2) {
        for (int j = 1; j < i; j++) {
            System.out.println("hello hannah");
        }
    }
}
\Theta(_
                _)
```

Solution: $\Theta(N)$
Explanation: The inner loop does $i$ work each time, and we double $i$ each time until reaching $N .1+2+4+8+\ldots+N=\Theta(N)$

Here is a video walkthrough of both parts.

## 2 Finish the Runtimes

Below we see the standard nested for loop, but with missing pieces!

```
for (int i = 1; i < ______; i = ______) {
    for (int j = 1; j <
```

$\qquad$

``` ; \(j=\)
``` \(\qquad\)
``` _) \{
            System.out.println("We will miss you next semester Akshit :(");
    }
}
```

For each part below, some of the blanks will be filled in, and a desired runtime will be given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.
Hint: You may find Math. pow helpful.
(a) Desired runtime: $\Theta\left(N^{2}\right)$

```
for (int i = 1; i < N; i = i + 1) {
    for (int j = 1; j < i; j =
```

$\qquad$

``` System.out.println("This is one is low key hard");
    }
}
for (int i = 1; i < N; i = i + 1) {
    for (int j = 1; j < i; j = j + 1) {
        System.out.println("This is one is low key hard");
    }
}
```

Explanation: Remember the arithmetic series $1+2+3+4+\ldots+N=\Theta\left(N^{2}\right)$. We get this series by incrementing $j$ by 1 per inner loop.
(b) Desired runtime: $\Theta(\log (N))$

```
for (int i = 1; i < N; i = i * 2) {
    for (int j = 1; j < ______; j = j * 2) {
        System.out.println("This is one is mid key hard");
    }
}
```

Any constant would work here, 2 was chosen arbitrarily.

```
for (int i = 1; i < N; i = i * 2) {
    for (int j = 1; j < 2; j = j * 2) {
        System.out.println("This is one is mid key hard");
    }
}
```

Explanation: The outer loop already runs $\log n$ times, since $i$ doubles each time. This means the inner loop must do constant work (so any constant j < k would work).
(c) Desired runtime: $\Theta\left(2^{N}\right)$

```
for (int i = 1; i < N; i = i + 1) {
    for (int j = 1; j < _____; j = j + 1) {
        System.out.println("This is one is high key hard");
    }
}
for (int i = 1; i < N; i = i + 1) {
    for (int j = 1; j < Math.pow(2, i); j = j + 1) {
        System.out.println("This is one is high key hard");
    }
}
```

Explanation: Remember the geometric series $1+2+4+\ldots+2^{N}=\Theta\left(2^{N}\right)$. We notice that $i$ increments by 1 each time, so in order to achieve this $2^{N}$ runtime, we must run the inner loop $2^{i}$ times per outer loop iteration.
(d) Desired runtime: $\Theta\left(N^{3}\right)$

```
for (int i = 1; i < _____; i = i * 2) {
    for (int j = 1; j < N * N; j = ______) {
        System.out.println("yikes");
    }
}
for (int i = 1; i < Math.pow(2, N); i = i * 2) {
    for (int j = 1; j < N * N; j = j + 1) {
        System.out.println("yikes");
    }
}
```

Explanation: One way to get $N^{3}$ runtime is to have the outer loop run $N$ times, and the inner loop run $N^{2}$ times per outer loop iteration. To make the outer loop run $N$ times, we need stop after multiplying i = i * $2 N$ times, giving us the condition i < Math. pow $(2, \mathrm{~N})$. To make the inner loop run $N^{2}$ times, we can simply increment by 1 each time.

## 3 Bit Operations

In the following questions, use bit manipulation operations to achieve the intended functionality and fill out the function details -
(a) Implement a function isPalindrome which checks if the binary representation of a given number is palindrome. The function returns true if and only if the binary representation of num is a palindrome.

For example, the function should return true for isPalindrome(9) since binary representation of 9 is 1001 which is a palindrome.

```
/**
* Returns true if binary representation of num is a palindrome
*/
public static boolean isPalindrome(int num) {
    // stores reverse of binary representation of num
    int reverse = 0;
```

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

```
    return num == reverse;
}
```


## Solution:

```
/**
* Returns true if binary representation of num is a palindrome
*/
public static boolean isPalindrome(int num) {
    // stores reverse of binary representation of num
    int reverse = 0;
    // do till all bits of num are processed
    int k = num;
```

```
    while (k > 0)
    {
        // add rightmost bit to reverse
        reverse = (reverse << 1) | (k & 1);
        k = k >> 1; // drop last bit
}
return num == reverse;
```

\}

Explanation: The main idea is to reverse the bits of num; it is a palindrome if and only if it is equal to its reverse. To do this, we initialize reverse to all zeros. Inside the loop:

1. Shift reverse to "vacate" its last bit.
rrr << 1 -> rrr0
2. Get the last bit of $k$.
kkkk \& 0001 -> 000k
3. or the numbers together to get the combined bits.
rrr0 | 000k -> rrrk
4. Remove the bit of $k$ we just used.
(b) Implement a function swap which for a given integer, swaps two bits at given positions. The function returns the resulting integer after bit swap operation.

For example, when the function is called with inputs $\operatorname{swap}(31,3,7)$, it should reverse the 3 rd and 7 th bits from the right and return 91 since 31 (00011111) would become 91 (01011011).

```
/**
* Function to swap bits at position a and b (from right) in integer num
*/
public static int swap(int num, int a, int b) {
```




$\qquad$
$\qquad$
$\qquad$
$\qquad$

```
    return num;
}
Solution:
```

```
/**
```

/**

* Function to swap bits at position a and b (from right) in integer num
* Function to swap bits at position a and b (from right) in integer num
*/
*/
public static int swap(int num, int a, int b) {
public static int swap(int num, int a, int b) {
int p = a-1;
int p = a-1;
int q = b-1;
int q = b-1;
int bit_a = (num >> p) \& 1;
int bit_a = (num >> p) \& 1;
int bit_b = (num >> q) \& 1;
int bit_b = (num >> q) \& 1;
if (bit_a != bit_b) { // if the bits are different
if (bit_a != bit_b) { // if the bits are different
num ^= (1 << p);
num ^= (1 << p);
num ^= (1 << q);
num ^= (1 << q);
}
}
return num;
return num;
}

```
}
```

Explanation: To get the kth bit from the right in a number, we can shift the number right by k-1 bits, then perform an with 1 . For a visualization, suppose we are trying to get the third bit from the right for $b_{4} b_{3} b_{2} b_{1}$. First, we right shift by 2 to get $00 b_{4} b_{3} .00 b_{4} b_{3} \& 0001$ gives $000 b_{3}$ as desired. This is the operation performed in line 8 and 9 .
We only need to swap if the two bits are different. If the bits are different, this problem reduces to flipping the bits at position a and b. To flip a bit at position k , we simply xor it with $1(1 \oplus 1=0,0 \oplus 1=1)$. This corresponds to lines 12 and 13.

## 4 Bits Runtime

Determine the best and worst case runtime of tricky.

```
public void tricky(int n) {
    if (n > 0) {
        tricky(n & (n - 1));
    }
}
```

Best Case: $\Theta(\quad)$, Worst Case: $\Theta(\quad)$

## Solution:

Best Case: $\Theta(1)$, Worst Case: $\Theta(\log N)$
Explanation: The main idea is that this function zeros out a 1 in $n$ each time. If n starts off as some power of 2 , it only has one 1 and finishes in constant time. If n is all ones, it takes $\log \mathrm{N}$ recursive calls to finish (there are $\log \mathrm{N}$ bits in N ).
There are two main cases for $n$. First, if $n$ is odd, $n-1$ has a 0 in the last bit, so the last bit of n will be zeroed out. If n is even so its last bits are something like $10 \ldots 0$, then the last bits of $n-1$ will be $01 \ldots 1$. and-ing these together zeros out the first nonzero bit from the right.

