
CS 61B Asymptotics and Bits
Fall 2021 Exam Prep Discussion 7: October 4, 2021

1 Asymptotics Introduction
Give the runtime of the following functions in Θ notation. Your answer should be

as simple as possible with no unnecessary leading constants or lower order terms.

private void f1(int N) {

for (int i = 1; i < N; i++) {

for (int j = 1; j < i; j++) {

System.out.println("hello tony");

}

}

}

Θ(___)

Solution: Θ(N2)

Explanation: The inner loop does up to i work each time, and the outer loop

increments i each time. Summing over each loop, we get that 1+2+3+4+. . . +N =

Θ(N2).

private void f2(int N) {

for (int i = 1; i < N; i *= 2) {

for (int j = 1; j < i; j++) {

System.out.println("hello hannah");

}

}

}

Θ(___)

Solution: Θ(N)

Explanation: The inner loop does i work each time, and we double i each time

until reaching N . 1 + 2 + 4 + 8 + . . . + N = Θ(N)

Here is a video walkthrough of both parts.

https://youtu.be/bBqfehNv7mQ

2 Asymptotics and Bits

2 Finish the Runtimes
Below we see the standard nested for loop, but with missing pieces!

1 for (int i = 1; i < ______; i = ______) {

2 for (int j = 1; j < ______; j = ______) {

3 System.out.println("We will miss you next semester Akshit :(");

4 }

5 }

For each part below, some of the blanks will be filled in, and a desired runtime will

be given. Fill in the remaining blanks to achieve the desired runtime! There may

be more than one correct answer.

Hint: You may find Math.pow helpful.

(a) Desired runtime: Θ(N2)

1 for (int i = 1; i < N; i = i + 1) {

2 for (int j = 1; j < i; j = ______) {

3 System.out.println("This is one is low key hard");

4 }

5 }

1 for (int i = 1; i < N; i = i + 1) {

2 for (int j = 1; j < i; j = j + 1) {

3 System.out.println("This is one is low key hard");

4 }

5 }

Explanation: Remember the arithmetic series 1+2+3+4+. . . +N = Θ(N2).

We get this series by incrementing j by 1 per inner loop.

(b) Desired runtime: Θ(log(N))

1 for (int i = 1; i < N; i = i * 2) {

2 for (int j = 1; j < ______; j = j * 2) {

3 System.out.println("This is one is mid key hard");

4 }

5 }

Any constant would work here, 2 was chosen arbitrarily.

1 for (int i = 1; i < N; i = i * 2) {

2 for (int j = 1; j < 2; j = j * 2) {

3 System.out.println("This is one is mid key hard");

4 }

5 }

Explanation: The outer loop already runs log n times, since i doubles each

time. This means the inner loop must do constant work (so any constant j <

k would work).

Asymptotics and Bits 3

(c) Desired runtime: Θ(2N)

1 for (int i = 1; i < N; i = i + 1) {

2 for (int j = 1; j < ______; j = j + 1) {

3 System.out.println("This is one is high key hard");

4 }

5 }

1 for (int i = 1; i < N; i = i + 1) {

2 for (int j = 1; j < Math.pow(2, i); j = j + 1) {

3 System.out.println("This is one is high key hard");

4 }

5 }

Explanation: Remember the geometric series 1 + 2 + 4 + ... + 2N = Θ(2N).

We notice that i increments by 1 each time, so in order to achieve this 2N

runtime, we must run the inner loop 2i times per outer loop iteration.

(d) Desired runtime: Θ(N3)

1 for (int i = 1; i < ______; i = i * 2) {

2 for (int j = 1; j < N * N; j = ______) {

3 System.out.println("yikes");

4 }

5 }

1 for (int i = 1; i < Math.pow(2, N); i = i * 2) {

2 for (int j = 1; j < N * N; j = j + 1) {

3 System.out.println("yikes");

4 }

5 }

Explanation: One way to get N3 runtime is to have the outer loop run N

times, and the inner loop run N2 times per outer loop iteration. To make the

outer loop run N times, we need stop after multiplying i = i * 2 N times,

giving us the condition i < Math.pow(2, N). To make the inner loop run N2

times, we can simply increment by 1 each time.

4 Asymptotics and Bits

3 Bit Operations
In the following questions, use bit manipulation operations to achieve the intended

functionality and fill out the function details -

(a) Implement a function isPalindrome which checks if the binary representation

of a given number is palindrome. The function returns true if and only if the

binary representation of num is a palindrome.

For example, the function should return true for isPalindrome(9) since binary

representation of 9 is 1001 which is a palindrome.

1 /**

2 * Returns true if binary representation of num is a palindrome

3 */

4 public static boolean isPalindrome(int num) {

5 // stores reverse of binary representation of num

6 int reverse = 0;

7

8 ___

9

10 ___

11

12 ___

13

14 ___

15

16 ___

17

18 ___

19

20 ___

21

22 return num == reverse;

23 }

Solution:

1 /**

2 * Returns true if binary representation of num is a palindrome

3 */

4 public static boolean isPalindrome(int num) {

5 // stores reverse of binary representation of num

6 int reverse = 0;

7

8 // do till all bits of num are processed

9 int k = num;

Asymptotics and Bits 5

10 while (k > 0)

11 {

12 // add rightmost bit to reverse

13 reverse = (reverse << 1) | (k & 1);

14 k = k >> 1; // drop last bit

15 }

16 return num == reverse;

17 }

Explanation: The main idea is to reverse the bits of num; it is a palindrome

if and only if it is equal to its reverse. To do this, we initialize reverse to all

zeros. Inside the loop:

1. Shift reverse to ”vacate” its last bit.

rrr << 1 -> rrr0

2. Get the last bit of k.

kkkk & 0001 -> 000k

3. or the numbers together to get the combined bits.

rrr0 | 000k -> rrrk

4. Remove the bit of k we just used.

6 Asymptotics and Bits

(b) Implement a function swap which for a given integer, swaps two bits at given

positions. The function returns the resulting integer after bit swap operation.

For example, when the function is called with inputs swap(31, 3, 7), it should

reverse the 3rd and 7th bits from the right and return 91 since 31 (00011111)

would become 91 (01011011).

1 /**

2 * Function to swap bits at position a and b (from right) in integer num

3 */

4 public static int swap(int num, int a, int b) {

5 ___

6

7 ___

8

9 ___

10

11 ___

12

13 ___

14

15 ___

16

17 ___

18

19 return num;

20 }

Solution:

1 /**

2 * Function to swap bits at position a and b (from right) in integer num

3 */

4 public static int swap(int num, int a, int b) {

5 int p = a-1;

6 int q = b-1;

7

8 int bit_a = (num >> p) & 1;

9 int bit_b = (num >> q) & 1;

10

11 if (bit_a != bit_b) { // if the bits are different

12 num ˆ= (1 << p);

13 num ˆ= (1 << q);

14 }

15 return num;

16 }

Asymptotics and Bits 7

Explanation: To get the kth bit from the right in a number, we can shift

the number right by k - 1 bits, then perform an with 1. For a visualization,

suppose we are trying to get the third bit from the right for b4b3b2b1. First,

we right shift by 2 to get 00b4b3. 00b4b3 & 0001 gives 000b3 as desired. This is

the operation performed in line 8 and 9.

We only need to swap if the two bits are different. If the bits are different,

this problem reduces to flipping the bits at position a and b. To flip a bit at

position k, we simply xor it with 1 (1 ⊕ 1 = 0, 0 ⊕ 1 = 1). This corresponds

to lines 12 and 13.

4 Bits Runtime
Determine the best and worst case runtime of tricky.

1 public void tricky(int n) {

2 if (n > 0) {

3 tricky(n & (n - 1));

4 }

5 }

Best Case: Θ(), Worst Case: Θ()

Solution:

Best Case: Θ(1), Worst Case: Θ(logN)

Explanation: The main idea is that this function zeros out a 1 in n each time. If

n starts off as some power of 2, it only has one 1 and finishes in constant time. If

n is all ones, it takes log N recursive calls to finish (there are log N bits in N).

There are two main cases for n. First, if n is odd, n - 1 has a 0 in the last bit, so

the last bit of n will be zeroed out. If n is even so its last bits are something like

10 ... 0, then the last bits of n - 1 will be 01 ... 1. and-ing these together zeros

out the first nonzero bit from the right.

	Asymptotics Introduction
	Finish the Runtimes
	Bit Operations
	Bits Runtime

