
CS 61B More Asymptotics
Fall 2021 Exam Prep Discussion 8: October 11, 2021

1 Asymptotics is Fun!
(a) Using the function g defined below, what is the runtime of the following func-

tion calls? Write each answer in terms of N.

1 void g(int N, int x) {

2 if (N == 0) {

3 return;

4 }

5 for (int i = 1; i <= x; i++) {

6 g(N - 1, i);

7 }

8 }

g(N, 1): Θ( )

g(N, 2): Θ( )

Solution:

g(N, 1): Θ(N)

Explanation: When x is 1, the loop gets executed once and makes a single

recursive call to g(N - 1). The recursion goes g(N), g(N - 1), g(N - 2), and

so on. This is a total of N recursive calls, each doing constant work.

g(N, 2): Θ(N2)

Explanation: When x is 2, the loop gets executed twice. This means a call to

g(N) makes 2 recursive calls to g(N - 1, 1) and g(N - 1, 2). The recursion

tree looks like this:

From the first part, we know g(..., 1) does linear work. Thus, this is a recur-

sion tree with N levels, and the total work is (N−1)+(N−2)+ ...+1 = Θ(N2)

work.

(b) Suppose we change line 6 to g(N - 1, x) and change the stopping condition

in the for loop to i <= f(x) where f returns a random number between 1 and

x, inclusive. For the following function calls, find the tightest Ω and big O

bounds.



2 More Asymptotics

1 void g(int N, int x) {

2 if (N == 0) {

3 return;

4 }

5 for (int i = 1; i <= f(x); i++) {

6 g(N - 1, x);

7 }

8 }

g(N, 2): Ω( ), O( )

g(N, N): Ω( ), O( )

Solution:

g(N, 2): Ω(N), O(2N )

g(N, N): Ω(N), O(NN )

Explanation: Suppose f(x) always returns 1. Then, this is the same as case

1 from (a), resulting in a linear runtime.

On the other hand, suppose f(x) always returns x. Then g(N, x) makes x

recursive calls to g(N - 1, x), each of which makes x recursive calls to g(N -

2, x), and so on, so the recursion tree has 1, x, x2 ... nodes per level. Outside

of the recursion, the function g does x work per node. Thus, the overall work

is x ∗ 1 + x ∗ x + x ∗ x2 + ... + x ∗ xN−1 = x(1 + x + x2 + ... + xN−1).

Plug in x = 2 to get 2(1 + 2 + 22 + ... + 2N−1) = O(2N ) for our first upper

bound. Plug in x = N to get N(1 +N +N2 + ...+NN−1) = O(NN ) (ignoring

lower-order terms).



More Asymptotics 3

2 Flip Flop
Suppose we have the flip function as defined below. Assume the method unknown

returns a random integer between 1 and N, exclusive, and runs in constant time.

For each definition of the flop method below, give the best and worst case runtime

of flip in Θ(.) notation as a function of N.

1 public static void flip(int N) {

2 if (N <= 100) {

3 return;

4 }

5 int stop = unknown(N);

6 for (int i = 1; i < N; i++) {

7 if (i == stop) {

8 flop(i, N);

9 return;

10 }

11 }

12 }

(a) public static void flop(int i, int N) {

flip(N - i);

}

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(N), Worst Case: Θ(N)

Explanation: Consider some arbitrary value of stop. When stop = x, we do

x work inside of flip (the for loop) and recursively call flip(N - x) through

flop. This results in a total of N / x calls before reaching our base case, and

x work per call, for a total of Θ(N) work. Note that this holds for any value

of x, so our best and worst case are the same.

(b) public static void flop(int i, int N) {

int minimum = Math.min(i, N - i);

flip(minimum);

flip(minimum);

}

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(1), Worst Case: Θ(N log(N))

Explanation: In the best case, stop = 1. This hits the base case immediately,

so we make 2 calls to flip then stop for Θ(1) work.

In the worst case, stop = N / 2. This results in flip making 2 recursive calls

to itself with the argument N / 2. Note the similarity of this recurrence and

mergesort; the runtime is the same Θ(N logN).



4 More Asymptotics

(c) public static void flop(int i, int N) {

flip(i);

flip(N - i);

}

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(N), Worst Case: Θ(N2)

Explanation: In the best case, suppose stop = 1. Then flip(N) makes

recursive calls to flip(1) and flip(N - 1), the first of which terminates

immediately in the base case. flip(N - 1) then calls flip(1) and flip(N -

2). The pattern is a linear recursion: constant work per call, N calls total for

Θ(N) work.

In the worst case, suppose stop = N - 1. Note that this case is symmetrical

to the best case in terms of recursive calls; however we do work proportional

to N inside of flip each time because of the for loop. The overall work is

(N − 1) + (N − 2) + (N − 3) + ... + 2 + 1 = Θ(N2).



More Asymptotics 5

3 Prime Factors
Determine the best and worst case runtime of prime_factors in Θ(.) notation as a

function of N.

1 int prime_factors(int N) {

2 int factor = 2;

3 int count = 0;

4 while (factor * factor <= N) {

5 while (N % factor == 0) {

6 System.out.println(factor);

7 count += 1;

8 N = N / factor;

9 }

10 factor += 1;

11 }

12 return count;

13 }

Best Case: Θ( ), Worst Case: Θ( )

Solution:

Best Case: Θ(log(N)), Worst Case: Θ(
√
N)

Explanation: In the best case, N is some power of 2. Then the inner while loop

will halve N each time until it becomes 1. At this point, both the inner and outer

while loop conditions will be false and the function will return. Halving N each time

results in a Θ(logN) runtime.

In the worst case, N will not be divisible by any value of factor. This means we

increment factor by 1 each time until factor * factor > N. This is at most
√
N

loops.


	Asymptotics is Fun!
	Flip Flop
	Prime Factors

