CS 61B

 Fall 2021
More Asymptotics

Exam Prep Discussion 8: October 11, 2021

1 Asymptotics is Fun!

(a) Using the function g defined below, what is the runtime of the following function calls? Write each answer in terms of N .

```
void g(int N, int x) {
    if (N == 0) {
            return;
    }
    for (int i = 1; i <= x; i++) {
        g(N - 1, i);
        }
}
g(N, 1): \Theta( )
g(N, 2): \Theta( )
```


Solution:

$g(N, 1): \Theta(N)$
Explanation: When x is 1 , the loop gets executed once and makes a single recursive call to $g(N-1)$. The recursion goes $g(N), g(N-1), g(N-2)$, and so on. This is a total of N recursive calls, each doing constant work.
$\mathrm{g}(\mathrm{N}, 2): ~ \Theta\left(N^{2}\right)$
Explanation: When x is 2, the loop gets executed twice. This means a call to $g(N)$ makes 2 recursive calls to $g(N-1,1)$ and $g(N-1,2)$. The recursion tree looks like this:

From the first part, we know $\mathrm{g}(\ldots, 1)$ does linear work. Thus, this is a recursion tree with N levels, and the total work is $(N-1)+(N-2)+\ldots+1=\Theta\left(N^{2}\right)$ work.
(b) Suppose we change line 6 to $g(N-1, x)$ and change the stopping condition in the for loop to $i<=f(x)$ where f returns a random number between 1 and x, inclusive. For the following function calls, find the tightest Ω and big O bounds.

```
void g(int N, int x) {
    if (N == 0) {
        return;
    }
    for (int i = 1; i <= f(x); i++) {
        g(N - 1, x);
    }
}
\(\mathrm{g}(\mathrm{N}, 2): \Omega(\quad), \mathrm{O}(\quad)\)
\(\mathrm{g}(\mathrm{N}, \mathrm{N}): \Omega(\quad), \mathrm{O}(\quad)\)
```


Solution:

$\mathrm{g}(\mathrm{N}, 2): \Omega(N), \mathrm{O}\left(2^{N}\right)$
$\mathrm{g}(\mathrm{N}, \mathrm{N}): \Omega(N), \mathrm{O}\left(N^{N}\right)$
Explanation: Suppose $f(x)$ always returns 1. Then, this is the same as case 1 from (a), resulting in a linear runtime.
On the other hand, suppose $f(x)$ always returns x. Then $g(N, x)$ makes x recursive calls to $g(N-1, x)$, each of which makes x recursive calls to $g(N-$ $2, \mathrm{x}$), and so on, so the recursion tree has $1, \mathrm{x}, x^{2} \ldots$ nodes per level. Outside of the recursion, the function g does x work per node. Thus, the overall work is $x * 1+x * x+x * x^{2}+\ldots+x * x^{N-1}=x\left(1+x+x^{2}+\ldots+x^{N-1}\right)$.
Plug in $\mathrm{x}=2$ to get $2\left(1+2+2^{2}+\ldots+2^{N-1}\right)=O\left(2^{N}\right)$ for our first upper bound. Plug in $\mathrm{x}=\mathrm{N}$ to get $N\left(1+N+N^{2}+\ldots+N^{N-1}\right)=O\left(N^{N}\right)$ (ignoring lower-order terms).

2 Flip Flop

Suppose we have the flip function as defined below. Assume the method unknown returns a random integer between 1 and N , exclusive, and runs in constant time. For each definition of the flop method below, give the best and worst case runtime of flip in $\Theta($.$) notation as a function of N$.

```
public static void flip(int N) {
    if (N <= 100) {
        return;
    }
    int stop = unknown(N);
    for (int i = 1; i < N; i++) {
        if (i == stop) {
            flop(i, N);
            return;
        }
    }
}
```

(a) public static void flop(int i, int N) \{
flip(N - i);
\}

Best Case: $\Theta(\quad)$, Worst Case: $\Theta(\quad)$

Solution:

Best Case: $\Theta(N)$, Worst Case: $\Theta(N)$
Explanation: Consider some arbitrary value of stop. When stop = x, we do x work inside of flip (the for loop) and recursively call flip $(N-x)$ through flop. This results in a total of N / x calls before reaching our base case, and x work per call, for a total of $\Theta(N)$ work. Note that this holds for any value of x , so our best and worst case are the same.
(b) public static void flop(int i, int N) \{
int minimum = Math.min(i, N - i); flip(minimum); flip(minimum);
\}
Best Case: $\Theta(\quad)$, Worst Case: $\Theta(\quad)$
Solution:
Best Case: $\Theta(1)$, Worst Case: $\Theta(N \log (N))$
Explanation: In the best case, stop $=1$. This hits the base case immediately, so we make 2 calls to flip then stop for $\Theta(1)$ work.
In the worst case, stop $=\mathrm{N} / 2$. This results in flip making 2 recursive calls to itself with the argument $N / 2$. Note the similarity of this recurrence and mergesort; the runtime is the same $\Theta(N \log N)$.
(c) public static void flop(int i, int N) \{
flip(i);
flip(N - i);
\}

Best Case: $\Theta(\quad)$, Worst Case: $\Theta(\quad)$

Solution:

Best Case: $\Theta(N)$, Worst Case: $\Theta\left(N^{2}\right)$
Explanation: In the best case, suppose stop $=1$. Then flip(N) makes recursive calls to $\mathrm{flip}(1)$ and $\mathrm{flip}(\mathrm{N}-1)$, the first of which terminates immediately in the base case. flip $(N-1)$ then calls flip(1) and flip(N 2). The pattern is a linear recursion: constant work per call, N calls total for $\Theta(N)$ work.
In the worst case, suppose stop $=\mathrm{N}-1$. Note that this case is symmetrical to the best case in terms of recursive calls; however we do work proportional to N inside of flip each time because of the for loop. The overall work is $(N-1)+(N-2)+(N-3)+\ldots+2+1=\Theta\left(N^{2}\right)$.

3 Prime Factors

Determine the best and worst case runtime of prime_factors in Θ (.) notation as a function of N .

```
int prime_factors(int N) {
    int factor = 2;
    int count = 0;
    while (factor * factor <= N) {
        while (N % factor == 0) {
            System.out.println(factor);
            count += 1;
            N = N / factor;
        }
        factor += 1;
    }
    return count;
}
```

Best Case: $\Theta(\quad)$, Worst Case: $\Theta(\quad)$

Solution:

Best Case: $\Theta(\log (N))$, Worst Case: $\Theta(\sqrt{N})$
Explanation: In the best case, N is some power of 2. Then the inner while loop will halve N each time until it becomes 1 . At this point, both the inner and outer while loop conditions will be false and the function will return. Halving N each time results in a $\Theta(\log N)$ runtime.
In the worst case, N will not be divisible by any value of factor. This means we increment factor by 1 each time until factor $*$ factor $>N$. This is at most \sqrt{N} loops.

