
CS 61B Trees
Fall 2021 Exam Prep Discussion 9: October 18, 2021

1 Traversals
Taken from Summer 2021 MT2.

a) (1 Point). Given the tree below, give its preorder, inorder, postorder, and

level order traversals. Format each traversal as a space separated list, e.g. 1 2 3

4.

Preorder:

Inorder:

Postorder:

Level Order:

Solution:

Preorder: 2 1 0 5 4 3 7 6 8

Inorder: 0 1 2 3 4 5 6 7 8

Postorder: 0 1 3 4 6 8 7 5 2

Level order: 2 1 5 0 4 7 3 6 8

Explanation: A useful trick for traversals is to trace around the nodes in a coun-

terclockwise fashion. For preorder, mark a node down each time you pass a node

on its left; for inorder, beneath; for postorder, to the right. Level order just goes

across each level from the root to the leaves.

b) (1.5 Points). It’s possible that 2 different traversals on the same tree produce

the same ordering. For instance, on the tree below,

2 Trees

notice the postorder and inorder traversals are both 0 1.

Looking at the tree from the previous part, notice that none of the traversals produce

the same ordering. However, we may be able to remove some leaf nodes from the

tree such that running two of the above traversals on the modified tree produce the

same ordering. Prioritizing removing the minimum amount of leaf nodes possible,

select the leaf nodes that need to be removed and the two traversals that become

the same. If you select more leaf nodes that the minimum, you won’t receive any

credit. If it isn’t possible, select “impossible” for both options below.

Leaf nodes to remove: © 0 © 3 © 6 © 8 © impossible

Traversals: © Preorder © Inorder © Postorder © Level Order

© impossible

Solution:

Leaf nodes to remove:
√

0
√

3 © 6 © 8 © impossible

Traversals:
√

Preorder © Inorder © Postorder
√

Level Order

© impossible

Explanation: In general, the inorder and preorder are equal if there are only right

children; the inorder and postorder are equal if there are only left children; preorder

and postorder are the same if there is a single node. All of there require the removal

of more nodes than we are given (0, 3, 6, and 8), so we must match something with

level-order traversal.

Note that a level-order traversal goes from root to leaf, left to right. The only depth-

first traversal that visits the leftmost node first is preorder, so matching level-order

and preorder seems most promising. In the full tree, preorder will visit 0 before 5,

even though it is on a lower level, so 0 must be removed. Similarly, it will visit 3

before 7, so 3 should also be removed.

Trees 3

2 Binary Trees
For each of the following question, use the following Tree class for reference.

1 public class Tree {

2 public Tree(Tree left, int value, Tree right) {

3 _left = left;

4 _value = value;

5 _right = right;

6 }

7 public Tree(int value) {

8 this(null, value, null);

9 }

10 public int value() {

11 return _value;

12 }

13 public Tree leftChild() {

14 return _left;

15 }

16 public Tree rightChild() {

17 return _right;

18 }

19 private int _value;

20 private Tree _left, _right;

21 }

4 Trees

(a) Given a binary tree, check if it is a sum tree or not. In a sum tree, the value

at each non-leaf node is equal to the sum of its children. For example, the

following binary tree is a sum tree:

1 public boolean isSumTree(Tree t) {

2 ___

3 ___

4 ___

5 ___

6 ___

7 ___

8 ___

9 ___

10 }

Solution:

1 public boolean isSumTree(Tree t) {

2 if (t == null || (t.leftChild() == null && t.rightChild() == null)) {

3 return true;

4 }

5

6 int left, right;

7 if (t.leftChild() != null) {

8 left = t.leftChild().value();

9 }

10 if (t.rightChild() != null) {

11 right = t.rightChild().value();

12 }

13

14 return t.value() == left + right &&

15 isSumTree(t.leftChild()) &&

16 isSumTree(t.rightChild());

17 }

Explanation: The base cases are if we are at a null node or if the tree is a

Trees 5

single node; in this case the tree is trivially a valid sum tree. Otherwise, we

must check two things: (1) the current node is valid (equal to the sum of its

left and right children), (2) the left and right child are valid sum trees, which

can be done recursively. Note that left and right are initialized to the default

int value 0, so if one of them happens to be null, it will not contribute to the

sum.

(b) Given a binary tree with distinct parts, an input list, and an empty output

list, add all the elements in the input list to the output list that appear in the

tree. The elements in the output list should be ordered in the same order that

would be returned from an inorder traversal.

For example, for the tree in Q.2(a) assuming it has only distinct parts, if the

input list is [15, 9, 8, 30, 6], then after the operation the output list should be

[9, 30, 15, 8, 6].

1 public static void sortRelative(Tree t,

2 List<Integer> inputList,

3 List<Integer> outputList) {

4 ___

5 ___

6 ___

7 ___

8 ___

9 ___

10 ___

11 ___

12 }

Solution:

1 public static void sortRelative(Tree t,

2 List<Integer> inputList,

3 List<Integer> outputList) {

4 if (t != null) {

5 sortRelative(t.leftChild(), inputList, outputList);

6 if (inputList.contains(t.value())) {

7 outputList.add(t.value());

8 }

9 sortRelative(t.rightChild(), inputList, outputList);

10 }

11 }

Explanation: The base case is a null tree, in which case we do nothing (as

captured by the if statement). Otherwise, remember that an inorder traversal

recurses on the left, visits the current node, then recurses on the right. We

capture this by recursively calling sortRelative on the left child first. Then,

we process the current node by adding it to the output list if it is in the input

list. Finally, following the inorder traversal, we recurse on the right child.

6 Trees

3 An Unintuitive Game
Sumer challenges Sohum to the following game. In this game, there is a maximizing

player and a minimizing player. Both players take turns adding numbers to the end

of the sequence. The maximizing player wants to maximize the last number in the

sequence, and the minimizing player wants to minimize it.

On a player’s turn, they take the previous number in the sequence and create

the next number by either:

• floor dividing it by 2

• multiplying it by 3 and adding 1

The sequence starts with 3, and can only contain numbers in the range 1 - 5. If a

number goes out of bounds after an operation, it wraps around. For example, floor

dividing 1 by 2 is zero, which wraps around to 5. Finally, the maximizing player

will always start and get two turns. The minimizing player will get one turn.

Here is an example of a sequence.

1. We start with 3.

2. The maximizer chooses to multiply 3 by 3 and add 1, giving us 10, which

wraps around to 5.

3. The minimizer chooses to floor divide 5 by 2 to get 2.

4. The maximizer chooses to multiply 2 by 3 and add 1, giving us 7, which wraps

around to 2.

5. The last number in the sequence is 2.

Trees 7

(a) Fill in the minimax game tree for the following game. Typically in game trees

only store the value of each node, but for this game it will be helpful to keep

track of the current number in the sequence, so an additional circle has been

given for that.

Note that no circle is written besides the leaf nodes because the value of each

leaf node is the current number! Also note that we wrote 3 in the first circle

to get you started (since the sequence starts with 3).

Solution:

8 Trees

(b) Assuming both players play optimally, what is the last number in the sequence?

Solution: 2

(c) Using the game tree from the part a, which branches can be pruned with alpha

beta pruning? Cross out the branches, if any, in the previous tree.

Solution:

Trees 9

Explanation: The right branch under the maximizer to 3 can be pruned

because we know the minimizer can always take its left child to get a value of

2. The maximizer has one child with value 2, so it must be ≥ 2, and can never

be better than the minimizer’s left child.

After examining the left branch, we know the root must have value at least

2. Examining the right minimizer’s first child, we see that it has value 2, so

the right minimizer has value ≤ 2, and can never be better than the root’s left

child.

10 Trees

(d) Now, suppose that we keep the game exactly the same but we change two

things:

1. We start with 4.

2. The maximizer wins if there is a duplicate in the sequence and the min-

imizer wins if the numbers are unique.

Fill in the game tree for the modified game. Note that a circle is written beside

each leaf node because the value of each leaf node isn’t the current number!

Hint: Use ∞ and −∞ to represent the maximizer winning and the minimizer

winning, respectively.

Solution:

Trees 11

(e) Assuming both players play optimally in this modified game, who wins?

Solution: The maximizer!

(f) Using the game tree from part c, which branches can be pruned with alpha

beta pruning? Cross out the branches, if any, in the previous tree.

Solution:

12 Trees

Explanation: After examining the root’s left child, we see that the maximizer

already has a winning option, so it doesn’t matter what the right child of the

root is.

	Traversals
	Binary Trees
	An Unintuitive Game

