Recreation

An integer is divided by 9 when a certain one of its digits is deleted,
and the resulting number is again divisible by 9.

a. Prove that actually dividing the resulting number by 9 results in
deleting another digit.

b. Find all integers satisfying the conditions of this problem.

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 1



CS61B Lecture #11: Examples: Comparable & Reader +
Some Features Supporting Abstraction

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 2



Comparable

e Java library provides an interface to describe Objects that have
a natural order on them, such as String, Integer, BigInteger and
BigDecimal:

public interface Comparable { // For now, the Java 1.4 version

/** Returns value <0, == 0, or > O depending on whether THIS is
* <, ==, or > 0BJ. Exception if OBJ not of compatible type. */
int compareTo(Object obj);

}

e Might use in a general-purpose max function:

/** The largest value in array A, or null if A empty. */
public static Comparable max(Comparable[] A) {
if (A.length == 0) return null;
Comparable result; result = A[0];
for (int i = 1; i < A.length; i += 1)
if (result.compareTo(A[i]) < 0) result = A[il;
return result;

}

e Now max (3) will return maximum value in S if S is an array of Strings,
or any other kind of Object that implements Comparable.

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 3



Examples: Implementing Comparable

/** A class representing a sequence of ints. */
class IntSequence implements Comparable {
private int[] myValues;
private int myCount;

public int get(int k) { return myValues[k]; }

@0verride
public int compareTo(Object obj) {
IntSequence x = (IntSequence) obj; // Blows up if obj not an IntSequence
for (int 1 = 0; i < myCount &% i < x.myCount; i += 1) {
if (myValues[i] < x.myValues[i]) {
return -1;
} else if (myValues[i] > x.myValues[i]) {
return 1;

}

return myCount - x.myCount; // <0 iff myCount < x.myCount

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 4



Implementing Comparable IT

e Also possible to add an interface retroactively.

o If IntSequence did not implement Comparable, but did implement

compareTo (without @0verride), we could write
class ComparableIntSequence extends IntSequence implements Comparable {

}

e Java would then "match up” the compareTo in IntSequence with that
in Comparable.

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 5



Java Generics (I)

e We've shown you the old Java 1.4 Comparable. The current version
uses a newer feature: Java generic types:

public interface Comparable<T> {
int compareTo(T x);

e Here, T is like a formal parameter in a method, except that its
“value" is a type.

e Revised IntSequence (no casting needed):

class IntSequence implements Comparable<IntSequence> {
@0verride
public int compareTo(IntSequence x) {
for (int i1 = 0; i < myCount &% i < x.myCount; i += 1) {

if (myValues[i] < x.myValues[i])

return myCount - x.myCount;

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 6



Example: Readers

e Java class java.io.Reader abstracts sources of characters.
e Here, we present a revisionist version (not the real thing):

public interface Reader { // Real java.io.Reader is abstract class
/** Release this stream: further reads are illegal */
void close();

/** Read as many characters as possible, up to LEN,
* into BUF[OFF], BUF[OFF+1],..., and return the
* number read, or -1 if at end-of-stream. */

int read(char[] buf, int off, int len);

/** Short for read(BUF, O, BUF.length). */
int read(char[] buf);

/** Read and return single character, or -1 at end-of-stream. */
int read();

}

e Can't write new Reader(); it's abstract. So what good is it?

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 7



Generic Partial Implementation

e According to their specifications, some of Reader's methods are re-
lated.

e Can express this with a partial implementation, which leaves key
methods unimplemented and provides default bodies for others.

e Result still abstract: can't use new on it.

/** A partial implementation of Reader. Concrete
* implementations MUST override close and read(,,).
* They MAY override the other read methods for speed. */
public abstract class AbstractReader implements Reader {
// Next two lines are redundant.
public abstract void close();
public abstract int read(char[] buf, int off, int len);

public int read(char[] buf) { return read(buf,0,buf.length); }
public int read() { return (read(bufl) == -1) ? -1 : bufi1[0]; }

private char[] bufl = new char[1];

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 8



Implementation of Reader: StringReader

The class StringReader reads characters from a String:

public class StringReader extends AbstractReader {
private String str;
private int k;
/** A Reader that delivers the characters in STR. */
public StringReader(String s) {
str = s; k = 0;

}

public void close() {
str = null;

}

public int read(char[] buf, int off, int len) {
if (k == str.length())
return -1;
len = Math.min(len, str.length() - k);
str.getChars(k, k+len, buf, off);
k += len;
return len;

}

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 9



Using Reader

Consider this method, which counts words:

/** The total number of words in R, where a "word" is
* a maximal sequence of non-whitespace characters. */

int wc(Reader r) {
int cO, count;
cO=""; count = O;
while (true) {
int ¢ = r.read();
if (¢ == -1) return count;
if (Character.isWhitespace((char) cO)
&& !'Character.isWhitespace((char) c))
count += 1;

cO = c;
}
}
This method works for any Reader:
wc (new StringReader (someText)) // # words in someText
wc(new InputStreamReader(System.in)) // # words in standard input
wc(new FileReader("foo.txt")) // # words in file foo.txt.

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 10



Client

wc method

read() A

\%

How It Fits Together

Interface Concrete Class  Abstract Template
Reader StringReader AbstractReader
SR . )
overrides
read(b,o0,1) read(b,o0,1) > read(b,o0,1)
alls
inherited
read(b) read(b) »| read(b)
*J_  from
\%
which inherited
read() » read () » read ()
is really from
\_ J N y
$s~ ‘~ ~~. ,{ "'v
) *._ implements extends .- ’
implements

Last modified: Sun Sep 19 22:18:29 2021

CS61B: Lecture #11

1



Lessons

e The Reader interface class served as a specification for a whole set
of readers.

e Ideally, most client methods that deal with Readers, like wc, will
specify type Reader for the formal parameters, not a specific kind
of Reader, thus assuming as little as possible.

e And only when a client creates a hew Reader will it get specific about
what subtype of Reader it needs.

e That way, client's methods are as widely applicable as possible.

e Finally, AbstractReader is a tool for implementors of non-abstract
Reader classes, and not used by clients.

e Alas, Java library is not pure. E.g., AbstractReader is really just
called Reader and there is no interface. In this example, we saw
what they should have donel

e The Comparable interface allows definition of functions that de-
pend only on a limited subset of the properties (methods) of their
arguments (such as "must have a compareTo method").

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 12



More OOP Features Supporting Abstraction

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 13



Parent Constructors

e In lecture notes #7, talked about how Java allows implementer of a
class to control all manipulation of objects of that class.

e In particular, this means that Java gives the constructor of a class
the first shot at each new object.

e When one class extends another, there are two constructors—one
for the parent type and one for the new (child) type.

e In this case, Java guarantees that one of the parent’s constructors
is called first. In effect, there is a call to a parent constructor at
the beginning of every one of the child's constructors.

e You can call the parent’s constructor yourself explicitly.

class Figure { class Rectangle extends Figure {
public Figure(int sides) { public Rectangle() {
e super(4);
oo oo

} }

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 14



Default Constructors

e By default, Java calls the "default” (parameterless) constructor if
there is no explicit constructor called.

/* This... */ /* Is equivalent to... */
class Thingy extends Rectangle { class Thingy extends Rectangle {
public Thingy() { public Thingy() {
setThingsUp Q) ; super () ;
} setThingsUp() ;
} }
}

e And it creates a default constructor for a class if no other con-
structor is defined for the class.

/* This... */ /* Is equivalent to... */ /* And thus to... */

class Crate { class Crate { class Crate {
} public Crate() { public Crate() {
} super () ;
} }
}

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 15



What Happens Here?

class Figure { class Rectangle extends Figure {
public Figure(int sides) { }

}
}

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 16



What Happens Here?

class Figure { class Rectangle extends Figure {
public Figure(int sides) { }
}

}

Answer: Compiler error. Rectangle has an implicit constructor that
tries to call the default construvtor in Figure, but there isn't one.

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 17



Using an Overridden Method

e Suppose that you wish to add to the action defined by a superclass's
method, rather than to completely override it.

e The overriding method can refer to overridden methods by using
the special prefix super.

e For example, you have a class with expensive functions, and you'd
like a memoizing version of the class.

class ComputeHard {
int cogitate(String x, int y) { ... }

}

class ComputelLazily extends ComputeHard {
int cogitate(String x, int y) {
if (don't already have answer for this x and y) {
int result = super.cogitate(x, y); // <<< Calls overridden function
memoize (save) result;
return result;

}

return memoized result;

}

Last modified: Sun Sep 19 22:18:29 2021 CS61B: Lecture #11 18



	Recreation
	CS61B Lecture #11: Examples: Comparable & Reader + Some Features Supporting Abstraction
	Comparable
	Examples: Implementing Comparable
	Implementing Comparable II
	Java Generics (I)
	Example: Readers
	Generic Partial Implementation
	Implementation of Reader: StringReader
	Using Reader
	How It Fits Together
	Lessons
	More OOP Features Supporting Abstraction
	Parent Constructors
	Default Constructors
	What Happens Here?
	Using an Overridden Method 

