CS61B Lecture #13: Packages, Access

Last modified: Thu Sep 23 22:51:33 2021 CS61B: Lecture #12 1

Package Mechanics

e Classes correspond to things being modeled (represented) in one's
program.

e Packages are collections of “related” classes and other packages.
e Java puts standard libraries and packages in package java and javax.
e By default, a class resides in the anonymous package.

e To put it elsewhere, use a package declaration at start of file, as in
package database; or package ucb.util;

e Oracle's javac uses convention that class C in package P1.P2 goes in
subdirectory P1/P2 of any other directory in the class path.

e Unix example:

$ export CLASSPATH=.:$HOME/java-utils:$MASTERDIR/lib/classes/junit.jar
$ java junit.textui.TestRunner MyTests

Searches for TestRunner.class in ./ junit/textui, ~/ java-utils/ junit/textui
and finally looks for junit/textui/TestRunner.class in the junit.jar

file (which is a single file that is a special compressed archive of an
entire directory of files).

Last modified: Thu Sep 23 22:51:33 2021 CS61B: Lecture #12 2

Access Modifiers

e Access modifiers (private, public, protected) do not add anything
to the power of Java.

e Basically allow a programmer to declare which classes are supposed
to need to access ("know about") what declarations.

e In Java, are also part of security—prevent programmers from accessing
things that would "break” the runtime system.

e Accessibility always determined by static types.

- To determine correctness of writing x.£ (), look at the definition
of £ in the static type of x.

- Why the static type? Because the rules are supposed to be
enforced by the compiler, which only knows static types of things
(static types don't depend on what happens at execution time).

Last modified: Thu Sep 23 22:51:33 2021 CS61B: Lecture #12 3

The Access Rules: Public

e Accessibility of a member depends on (1) how the member's declaration
is qualified and (2) where it is being accessed.

e C1,C2, C3, and C4 are distinct classes.

e Class C2a is either class C2 itself or a subtype of C2.

package P1;
public class Cl1 ... {

// M is a method, field,...

public int M ...
void h(C1 x)

{ ... x.M ...} // OK.

package P1;
public class C4 ... {
void p(Cl x)

{ ... x.M ...} // OK.

Last modified: Thu Sep 23 22:51:33 2021

package P2;

class C2 extends C3 {
void £(P1.C1 x) {... x.M ...} // OK
void g(C2a y) {... y.M ... } // OK

}

Public members are available everywhere.

CS61B: Lecture #12 4

The Access Rules: Private

e C1, C2, and C4 are distinct classes.

e Class C2a is either class C2 itself or a subtype of C2.

package P1;
public class Cl1 ... {
// M is a method, field,...
private int M ...
void h(C1l x)
{ ... xM...} // OK.

}
package P1;
public class C4 ... {
void p(Cl x)
{ ... x.M ... } // ERROR.
}

Last modified: Thu Sep 23 22:51:33 2021

package P2;

class C2 extends C1 {
void £(P1.C1 x) {... x.M ...} // ERROR
void g(C2a y) {... y.M ... } // ERROR

Private members are available only within the text
of the same class, even for subtypes.

CS61B: Lecture #12 b5

Private to a Class, Not an Object

e Consider a simple list implementation using linking:

public class LinkedList {
private Node _head,;
private static class Node {
Object _head;
Node _tail;

}

/** Swap the contents of this LinkedList and OTHER. */
public void swap(LinkedList other) {
LinkedList tmp = other._head; other._head = _head; _head = tmp;

Vo
}

e This is anobvious and correct implementation of swap, even though it
fetches a private member of a LinkedList object other than this.

o It is perfectly OK to do so by the rules, because swap is in the text
of LinkedList and therefore has access to all private fields.

e That is, "privacy” does not apply to individual objects, only to classes.

Last modified: Thu Sep 23 22:51:33 2021 CS61B: Lecture #12 6

The Access Rules: Package Private

e C1, C2, and C4 are distinct classes.
e Class C2a is either class C2 itself or a subtype of C2.

package P1;

public class Cl1 ... {
// M is a method, field,...
int M ...

void h(C1 x)
{ ... xM...} // OK.

package P1;
public class C4 ... {
void p(Cl x)
{ ... x.M ...} // OK.

Last modified: Thu Sep 23 22:51:33 2021

package P2;

class C2 extends C1 {
void £(P1.C1 x) {... x.M ...} // ERROR
void g(C2a y) {... y.M ... } // ERROR

Package Private members are available only within
the same package (even for subtypes).

CS61B: Lecture #12 7

The Access Rules: Protected

e C1, C2, and C4 are distinct classes.

e Class C2a is either class C2 itself or a subtype of C2.

package P1;
public class Cl1 ... {
// M is a method, field,...
protected int M ...
void h(C1l x)
{ ... xM...} // OK.

package P1;
public class C4 ... {
void p(Cl x)
{ ... x.M ...} // OK.

Last modified: Thu Sep 23 22:51:33 2021

package P2;
class C2 extends C1 {
void £(P1.C1 x) {... x.M ...} // ERROR
// (x’s type is not subtype of C2.)
void g(C2a y) {... y.M ... } // OK
void g2() {... M ... } // OK (this.M)

Protected members of C1 are available within P1, as
for package private. Outside P1, they are available
within subtypes of C1 such as C2, but only if
accessed from expressions whose static types are

subtypes of C2.

CS61B: Lecture #12 8

What May be Controlled

e Classes and interfaces that are not nested may be public or package
private.

e Members—fields, methods, constructors, and (later) nested types—may
have any of the four access levels.

e May override a method only with one that has at least as permissive
an access level. Reason: avoid inconsistency:

package P1; package P2;
public class C1 { class C3 {
public int £ { ... } void g(C2 y2) {
} Cl y1 = y2
y2.£(0); // Bad???
public class C2 extends C1 { yl1.£(0); // OK?7117
// Actually a compiler error; pretend }
// it’s not and see what happens }
int £O { ... }
}

That is, there's no point in restricting C2.f, because access control
depends on static types, and C1.f is public.

Last modified: Thu Sep 23 22:51:33 2021 CS61B: Lecture #12 9

Intentions of this Design

e public declarations represent specifications—what clients of a package
are supposed to rely on.

e package private declarations are part of the implementation of a
class that must be known to other classes that assist in the implementation.

e protected declarations are part of the implementation that subtypes
may heed, but that clients of the subtypes generally won't.

e private declarations are part of the implementation of a class that
only that class needs.

Last modified: Thu Sep 23 22:51:33 2021 CS61B: Lecture #12 10

Quick Quiz

package SomePack; // Anonymous package
public class Al {
int £1() { class A2 {
Al a = ... void g(SomePack.Al x) {
a.xl = 3; // 0K? x.f10; // OK7?
} x.yl = 3; // OK?
protected int y1; }
private int x1; }
}

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.f10; // OK?
x.yl = 3; // OK?
£10; // OK?
yl =3; // OK?
x1 =3; // O0K?
}
}

e Note: Last three lines of h have implicit this.'s in front. Static type
of this is B2.

Last modified: Thu Sep 23 22:51:33 2021 CS61B: Lecture #1211

Quick Quiz

package SomePack; // Anonymous package
public class Al {
int £1() { class A2 {
Al a = ... void g(SomePack.Al x) {
a.xl1 =3; // 0K x.f10; // 0K?
} x.yl = 3; // OK?
protected int y1; }
private int x1; }
}

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.f10; // OK?
x.yl = 3; // OK?
£10; // OK?
yl =3; // OK?
x1 =3; // O0K?
}
}

e Note: Last three lines of h have implicit this.'s in front. Static type
of this is B2.

Last modified: Thu Sep 23 22:51:33 2021 CS61B: Lecture #12 12

Quick Quiz

package SomePack; // Anonymous package
public class Al {
int £1() { class A2 {
Al a = ... void g(SomePack.Al x) {
a.xl =3; // 0K x.£f1(0; // ERROR
} x.yl = 3; // OK?
protected int yi; }
private int x1; }
}

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.f10; // OK?
x.yl = 3; // OK?
£10; // OK?
yl =3; // OK?
x1 =3; // O0K?
}
}

e Note: Last three lines of h have implicit this.'s in front. Static type
of this is B2.

Last modified: Thu Sep 23 22:51:33 2021 CS61B: Lecture #12 13

Quick Quiz

package SomePack; // Anonymous package
public class Al {
int £1() { class A2 {
Al a = ... void g(SomePack.Al x) {
a.xl =3; // 0K x.£f1(0; // ERROR
} x.yl = 3; // ERROR
protected int yi; }
private int x1; }
}

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.f10; // OK?
x.yl = 3; // OK?
£10; // OK?
yl =3; // OK?
x1 =3; // O0K?
}
}

e Note: Last three lines of h have implicit this.'s in front. Static type
of this is B2.

Last modified: Thu Sep 23 22:51:33 2021 CS61B: Lecture #12 14

Quick Quiz

package SomePack; // Anonymous package
public class Al {
int £1() { class A2 {
Al a = ... void g(SomePack.Al x) {
a.xl =3; // 0K x.£f1(0; // ERROR
} x.yl = 3; // ERROR
protected int yi; }
private int x1; }
}

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.f1(0); // ERROR
x.yl = 3; // OK?
£10; // OK?
yl =3; // OK?
x1 =3; // O0K?
}
}

e Note: Last three lines of h have implicit this.'s in front. Static type
of this is B2.

Last modified: Thu Sep 23 22:51:33 2021 CS61B: Lecture #12 15

package SomePack;
public class Al {

int £10 {

Al a = ...

a.x1 =3; // OK
}

protected int yi;
private int x1;

}

Quick Quiz

// Anonymous package

class A2 {
void g(SomePack.Al x) {
x.f1(0); // ERROR
x.yl = 3; // ERROR
}
}

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.f1(0); // ERROR
x.yl = 3; // OK?
£10; // ERROR
yl =3; // OK?
x1 = 3; // OK?
}
}

e Note: Last three lines of h have implicit this.'s in front. Static type

of this is B2.

Last modified: Thu Sep 23 22:51:33 2021

CS61B: Lecture #12 16

package SomePack;
public class Al {

int £10 {

Al a = ...

a.x1 =3; // OK
}

protected int yi;
private int x1;

}

Quick Quiz

// Anonymous package

class A2 {
void g(SomePack.Al x) {
x.f1(0); // ERROR
x.yl = 3; // ERROR
}
}

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.f1(0); // ERROR
x.yl = 3; // OK?
£10; // ERROR
yl =3; // OK
x1 =3; // O0K?
}
}

e Note: Last three lines of h have implicit this.'s in front. Static type

of this is B2.

Last modified: Thu Sep 23 22:51:33 2021

CS61B: Lecture #12 17

package SomePack;
public class Al {

int £10 {

Al a = ...

a.x1 =3; // OK
}

protected int yi;
private int x1;

}

Quick Quiz

// Anonymous package

class A2 {
void g(SomePack.Al x) {
x.f1(0); // ERROR
x.yl = 3; // ERROR
}
}

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.f1(0); // ERROR
x.yl = 3; // OK?
£10; // ERROR
yl =3; // OK
x1l = 3; // ERROR
}
}

e Note: Last three lines of h have implicit this.'s in front. Static type

of this is B2.

Last modified: Thu Sep 23 22:51:33 2021

CS61B: Lecture #12 18

package SomePack;
public class Al {

int £10 {

Al a = ...

a.x1 =3; // OK
}

protected int yi;
private int x1;

}

Quick Quiz

// Anonymous package

class A2 {
void g(SomePack.Al x) {
x.f1(0); // ERROR
x.yl = 3; // ERROR
}
}

class B2 extends SomePack.Al {
void h(SomePack.Al x) {
x.f1(0); // ERROR
x.yl = 3; // ERROR
£10; // ERROR
yl =3; // OK
x1l = 3; // ERROR
}
}

e Note: Last three lines of h have implicit this.'s in front. Static type

of this is B2.

Last modified: Thu Sep 23 22:51:33 2021

CS61B: Lecture #12 19

Access Control Static Only

"Public” and "private” don't apply to dynamic types; it is possible to call
methods in objects of types you can't name:

package utils;
/** A Set of things. */

package mystuff;
public interface Collector { class User {
void add(Object x); utils.Collector c =

utils.Utils.concat();

c.add("foo"); // OK
. c.value(); // ERROR

((utils.Concatenator) c).value()
// ERROR

package utils;
public class Utils {
public static Collector concat() {
return new Concatenator();

}
Yo

/** NON-PUBLIC class that collects strings. */
class Concatenater implements Collector {
StringBuffer stuff = new StringBuffer();
int n = 0;
public void add(Object x) { stuff.append(x); n += 1; }
public Object value() { return stuff.toString(); }

Last modified: Thu Sep 23 22:51:33 2021 CS61B: Lecture #12 20

	CS61B Lecture #13: Packages, Access
	Package Mechanics
	Access Modifiers
	The Access Rules: Public
	The Access Rules: Private
	Private to a Class, Not an Object
	The Access Rules: Package Private
	The Access Rules: Protected
	What May be Controlled
	Intentions of this Design
	Quick Quiz
	Access Control Static Only

