CS61B Lecture #14: Integers

Announcements:
e Project 1 checkpoint due tonight (don't worry; it's easy).

e Please use gitbug (see the Gitbugs tab on the website) to submit
requests for help debugging projects, homeworks, etc. This canbea
great deal more efficient than office hours or Piazza. In particular,
it helps o make sure we have all the information needed to help you.

e You can also use labs to ask for the same sort of help you might use
office hours for.

Last modified: Sun Sep 26 19:01:31 2021 CS61B: Lecture #14 1

Integer Types and Literals

Type | Bits| Signed? Literals
byte 8 Yes Cast from int: (byte) 3
short| 16 |Yes None. Cast from int: (short) 4096
>a’ // (char) 97
’\n’ // newline ((char) 10)
char | 16|No ’\t’> // tab ((char) 8)
’\\’ // backslash
>A’, °\101°, ’\u0041’ // == (char) 65
123
int 32| Yes 0100 // Octal for 64
0x3f, Oxffffffff // Hexadecimal 63, -1 (!)
Iong 64| Ves 123L, 01000L, Ox3fL

1234567891011L

e Negative numerals are just negated (positive) literals.
e "N bits" means that there are 2" integers in the domain of the type:

- If signed, range of values is —2¥-1 . 28~ — 1,
- If unsigned, only non-negative numbers, and range is 0..2" — 1.

Last modified: Sun Sep 26 19:01:31 2021

CS61B: Lecture #14 2

Overflow

e Problem: How do we handle overflow, such as occurs in 10000%x10000%10000?

e Some languages throw an exception (Ada), some give undefined re-
sults (C, C++)

e Java defines the result of any arithmetic operation or conversion
on integer types to "wrap around”"—modular arithmetic.

e That is, the "next number” after the largest in an integer type is
the smallest (like “clock arithmetic").

e E.g., (byte) 128 == (byte) (127+1) == (byte) -128
e In general,

- If the result of some arithmetic subexpression is supposed to
have type T', an n-bit integer type,
- then we compute the real (mathematical) value, z,

- and yield a number, 2/, that is in the range of T, and that is
equivalent o x modulo 2",

- (That means that x — 2’ is a multiple of 2".)

Last modified: Sun Sep 26 19:01:31 2021 CS61B: Lecture #14 3

Modular Arithmetic

e Define a = b (mod n) to mean that a — b = kn for some integer k.

e Define the binary operation a mod n as the value b such that ¢ = b (mod n)
and 0 < b < n for n > 0. (Can be extended to n < 0 as well, but
we won't bother with that here.) This is not the same as Java's
operation.

e Various facts: (Here, let o’ denote a mod n).

a +b" ; (a’+b) =a+ b
(a" =b) = (a'+(=b)) = (a—b)
(a/‘b/>/ — a/.b/:a‘b/
(a") = ((a)") = (a- (a"71)), for k > 0.

Last modified: Sun Sep 26 19:01:31 2021 CS61B: Lecture #14 4

Modular Arithmetic: Examples

o (byte) (64x8) yields 0, since 512 — 0 =2 x 25,

o (byte) (64%2) and (byte) (127+1) yield -128, since 128 — (—128) =
1 x 25,

o (byte) (101%99) yields 15, since 9999 — 15 = 39 x -25,
o (byte) (-30%13) yields 122, since —390 — 122 = —2 x 25,
e (char) (-1) yields 2! —1, since —1 — (2! — 1) = —1 x 216,

Last modified: Sun Sep 26 19:01:31 2021 CS61B: Lecture #14 5

Modular Arithmetic and Bits

e Why wrap around?

e Java's definition is the natural one for a machine that uses binary
arithmetic.

e For example, consider bytes (8 bits):

Decimal Binary
101 1100101
x99 1100011
9999 100111|00001111
— 9984 100111]00000000
15 00001111

e In general, bit n, counting from O at the right, corresponds to 2".

e The bits to the left of the vertical bars therefore represent multi-
ples of 2% = 256.

e So throwing them away is the same as arithmetic modulo 256.

Last modified: Sun Sep 26 19:01:31 2021 CS61B: Lecture #14 6

Negative numbers

e Why this representation for -1?

1
+ -1
- 0

000000015
11111111,
1100000000,

Only 8 bits in a byte, so bit 8 falls off, leaving O.

e The truncated bit is in the 2° place, so throwing it away gives an
equal number modulo 2°. All bits to the left of it are also divisible

by 2°,

e On unsigned types (char), arithmetic is the same, but we choose to
represent only non-negative numbers modulo 26

1
+ 201

00000000000000015
ITITT11111111111,

= 216 4 (| 1/00000000000000005

Last modified: Sun Sep 26 19:01:31 2021

CS61B: Lecture #14 7

Conversion

e In general Java will silently convert from one type to another if this
makes sense and no information is lost from value.

e Otherwise, cast explicitly, as in (byte) x.

e Hence, given
byte aByte; char aChar; short aShort; int anlInt; long along;
// OK:

aShort = aByte; anInt = aByte; anInt = aShort;
anInt = aChar; along = anlnt;

// Not 0K, might lose information:
anInt = along; aByte = anlInt; aChar = anInt; aShort = anlnt;
aShort = aChar; aChar = aShort; aChar = aByte;

// 0K by special dispensation:
aByte = 13; // 13 is compile-time constant
aByte = 12+100 // 112 is compile-time constant

Last modified: Sun Sep 26 19:01:31 2021 CS61B: Lecture #14 8

Promotion

e Arithmetic operations (+,*, ...) promote operands as needed.
e Promotion is just implicit conversion.
e For integer operations,

- if any operand is long, promote both to long.
- otherwise promote both to int.

e So,
aByte + 3 == (int) aByte + 3 // Type int
along + 3 == along + (long) 3 // Type long
'A’ + 2 == (int) A’ + 2 // Type int
aByte = aByte + 1 // ILLEGAL (why?)

e But fortunately,
aByte += 1; // Defined as aByte = (byte) (aByte+1)

e Common example:

// Assume aChar is an upper-case letter
char lowerCaseChar = (char) (’a’ + aChar - ’A’); // why cast?

Last modified: Sun Sep 26 19:01:31 2021 CS61B: Lecture #14 9

Bit twiddling

e Java (and C, C++) allow for handling intfeger types as sequences of
bits. No "conversion to bits" needed: they already are.

e Operations and their uses:

Mask Set Flip Flip all
00101100 00101100 00101100
& 10100111 || 10100111 |~ 10100111|~ 10100111
00100100 10101111 10001011 01011000
e Shifting:

Left Arithmetic Right Logical Right
10101101 <K 3 10101101 >> 3 10101100 >>> 3
01101000 11110101 00010101

(-1) >>> 29?
. x << n?
e What is: -S> D
(x >>> 3) & ((1<5)-1)7

Last modified: Sun Sep 26 19:01:31 2021

CS61B: Lecture #14

10

Bit twiddling

e Java (and C, C++) allow for handling intfeger types as sequences of
bits. No "conversion to bits" needed: they already are.

e Operations and their uses:

Mask Set Flip Flip all
00101100 00101100 00101100
& 10100111|| 10100111|~ 10100111~ 10100111
00100100 10101111 10001011 01011000

e Shifting:

Left Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3
01101000 11110101 00010101

(-1) >>> 29? =T7.
. x << n?
e What is: -S> D
(x >>> 3) & ((1<<5)-1)7

Last modified: Sun Sep 26 19:01:31 2021 CS61B: Lecture #14 11

Bit twiddling

e Java (and C, C++) allow for handling intfeger types as sequences of
bits. No "conversion to bits" needed: they already are.

e Operations and their uses:

Mask Set Flip Flip all
00101100 00101100 00101100
& 10100111|| 10100111|~ 10100111~ 10100111
00100100 10101111 10001011 01011000

e Shifting:

Left Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3
01101000 11110101 00010101

(-1) >>> 29? =7.
. T << n? =x-2".
e What is: -S> D
(x >>> 3) & ((1<<5)-1)7

Last modified: Sun Sep 26 19:01:31 2021 CS61B: Lecture #14 12

Bit twiddling

e Java (and C, C++) allow for handling intfeger types as sequences of
bits. No "conversion to bits" needed: they already are.

e Operations and their uses:

Mask Set Flip Flip all
00101100 00101100 00101100
& 10100111|| 10100111|~ 10100111~ 10100111
00100100 10101111 10001011 01011000

e Shifting:

Left Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3
01101000 11110101 00010101

(-1) >>> 29? =1.
. x <LK n? =x-2".
* Whatis: xr >> n? = |x/2"| (i.e., rounded down).
(x >>> 3) & ((1<5)-1)7?

Last modified: Sun Sep 26 19:01:31 2021 CS61B: Lecture #14 13

Bit twiddling

e Java (and C, C++) allow for handling intfeger types as sequences of
bits. No "conversion to bits" needed: they already are.

e Operations and their uses:

Mask Set Flip Flip all
00101100 00101100 00101100
& 10100111|| 10100111|~ 10100111~ 10100111
00100100 10101111 10001011 01011000

e Shifting:

Left Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3
01101000 11110101 00010101

(-1) >>> 29? =1.
. x <LK n? =x-2".
* Whatist o5 n2 — |2/2"| (i.e., rounded down).
(x >>> 3) & ((1<<5)-1)7|5-bit integer, bits 3-7 of x.

Last modified: Sun Sep 26 19:01:31 2021 CS61B: Lecture #14 14

	CS61B Lecture #14: Integers
	Integer Types and Literals
	Overflow
	Modular Arithmetic
	Modular Arithmetic: Examples
	Modular Arithmetic and Bits
	Negative numbers
	Conversion
	Promotion
	Bit twiddling

