CS61B Lecture \#16: Complexity

What Are the Questions?

- Cost is a principal concern throughout engineering:
"An engineer is someone who can do for a dime what any fool can do for a dollar."
- Cost can mean
- Operational cost (for programs, time to run, space requirements).
- Development costs: How much engineering time? When delivered?
- Maintenance costs: Upgrades, bug fixes.
- Costs of failure: How robust? How safe?
- Is this program fast enough? Depends on:
- For what purpose;
- For what input data.
- How much space (memory, disk space)?
- Again depends on what input data.
- How will it scale, as input gets big?

Enlightening Example

Problem: Scan a text corpus (say 10^{9} bytes or so), and find and print the 20 most frequently used words, together with counts of how often they occur.

- Solution 1 (Knuth): Heavy-Duty data structures
- Hash Trie implementation, randomized placement, pointers galore, several pages long.
- Solution 2 (Doug McIlroy): UNIX shell script:

```
tr -c -s '[:alpha:]' '[\n*]' < FILE | \
sort | \
uniq -c | \
sort -n -r -k 1,1 | \
sed 20q
```

- Which is better?
- \#1 is much faster,
- but \#2 took 5 minutes to write and processes $1 G B$ in $\approx 256 \mathrm{sec}$.
- I pick \#2.
- In very many cases, almost anything will do: Keep It Simple.

Cost Measures (Time)

- Wall-clock or execution time
- You can do this at home:
time java FindPrimes 1000
- Advantages: easy to measure, meaning is obvious.
- Appropriate where time is critical (real-time systems, e.g.).
- Disadvantages: applies only to specific data set, compiler, machine, etc.
- Dynamic statement counts of \# of times statements are executed:
- Advantages: more general (not sensitive to speed of machine).
- Disadvantages: doesn't tell you actual time, still applies only to specific data sets.
- Symbolic execution times:
- That is, formulas for execution times as functions of input size.
- Advantages: applies to all inputs, makes scaling clear.
- Disadvantage: practical formula must be approximate, may tell very little about actual time.

Asymptotic Cost

- Symbolic execution time lets us see shape of the cost function.
- Since we are approximating anyway, pointless to be precise about certain things:
- Behavior on small inputs:
* Can always pre-calculate some results.
* Times for small inputs not usually important.
* Often more interested in asymptotic behavior as input size becomes very large.
- Constant factors (as in "off by factor of 2"):
* Just changing machines causes constant-factor change.
- How to abstract away from (i.e., ignore) these things?

Handy Tool: Order Notation

- Idea: Don't try to produce specific functions that specify size, but rather families of functions with similarly behaved magnitudes.
- Then say something like " f is bounded by g if it is in g 's family."
- For any function $g(x)$, the functions $2 g(x), 0.5 g(x)$, or for any $K>0$, $K \cdot g(x)$, all have the same "shape". So put all of them into g 's family.
- Any function $h(x)$ such that $h(x)=K \cdot g(x)$ for $x>M$ (for some constant M) has g 's shape "except for small values." So put all of these in g^{\prime} s family.
- For upper limits, throw in all functions whose absolute value is everywhere \leq some member of g's family. Call this set $O(g)$ or $O(g(n))$.
- Or, for lower limits, throw in all functions whose absolute value is everywhere \geq some member of g 's family. Call this set $\Omega(g)$.
- Finally, define $\Theta(g)=O(g) \cap \Omega(g)$-the set of functions bracketed in magnitude by two members of g 's family.

Big Oh

- Goal: Specify bounding from above.

- Here, $f(x) \leq 2 g(x)$ as long as $x>1$,
- So $f(x)$ is in g^{\prime} s "bounded-above family," written

$$
f(x) \in O(g(x)),
$$

- ... even though (in this case) $f(x)>g(x)$ everywhere.

Big Omega

- Goal: Specify bounding from below:

- Here, $f^{\prime}(x) \geq \frac{1}{2} g(x)$ as long as $x>1$,
- So $f^{\prime}(x)$ is in $g^{\prime} s$ "bounded-below family," written

$$
f^{\prime}(x) \in \Omega(g(x)),
$$

- ... even though $f(x)<g(x)$ everywhere.

Big Theta

- In the two previous slides, we not only have $f(x) \in O(g(x))$ and $f^{\prime}(x) \in \Omega(g(x)), \ldots$
- ... but also $f(x) \in \Omega(g(x))$ and $f^{\prime}(x) \in O(g(x))$.
- We can summarize this all by saying $f(x) \in \Theta(g(x))$ and $f^{\prime}(x) \in$ $\Theta(g(x))$.

Aside: Various Mathematical Pedantry

- Technically, if I am going to talk about $O(\cdot), \Omega(\cdot)$ and $\Theta(\cdot)$ as sets of functions, I really should write, for example,

$$
f \in O(g) \quad \text { instead of } \quad f(x) \in O(g(x))
$$

- In effect, $f(x) \in O(g(x))$ is short for $\lambda x . f(x) \in O(\lambda x . g(x))$.
- The standard notation outside this course, in fact, is $f(x)=O(g(x))$, but personally, I think that's a serious abuse of notation.

How We Use Order Notation

- Elsewhere in mathematics, you'll see $O(\ldots)$, etc., used generally to specify bounds on functions.
- For example,

$$
\pi(N)=\Theta\left(\frac{N}{\ln N}\right)
$$

which I would prefer to write

$$
\pi(N) \in \Theta\left(\frac{N}{\ln N}\right)
$$

(Here, $\pi(N)$ is the number of primes less than or equal to N.)

- Also, you'll see things like

$$
f(x)=x^{3}+x^{2}+O(x) \quad\left(\text { or } f(x) \in x^{3}+x^{2}+O(x)\right)
$$

meaning that $f(x)=x^{3}+x^{2}+g(x)$ where $g(x) \in O(x)$.

- For our purposes, the functions we will be bounding will be cost functions: functions that measure the amount of execution time or the amount of space required by a program or algorithm.

Why It Matters

- Computer scientists often talk as if constant factors didn't matter at all, only the difference of $\Theta(N)$ vs. $\Theta\left(N^{2}\right)$.
- In reality they do matter, but at some point, constants always get swamped.

n	$16 \lg n$	\sqrt{n}	n	$n \lg n$	n^{2}	n^{3}	2^{n}
2	16	1.4	2	2	4	8	4
4	32	2	4	8	16	64	16
8	48	2.8	8	24	64	512	256
16	64	4	16	64	256	4,096	65,636
32	80	5.7	32	160	1024	32,768	4.2×10^{9}
64	96	8	64	384	4,096	262,144	1.8×10^{19}
128	112	11	128	896	16,384	2.1×10^{9}	3.4×10^{38}
\vdots							
1,024	160	32	1,024	10,240	1.0×10^{6}	1.1×10^{9}	1.8×10^{308}
\vdots							
2^{20}	320	1024	1.0×10^{6}	2.1×10^{7}	1.1×10^{12}	1.2×10^{18}	$6.7 \times 10^{315,652}$

- For example: replace column n^{2} with $10^{6} \cdot n^{2}$ and it still becomes dominated by 2^{n}.

Some Intuition on Meaning of Growth

- How big a problem can you solve in a given time?
- In the following table, left column shows time in microseconds to solve a given problem as a function of problem size N.
- Entries show the size of problem that can be solved in a second, hour, month (31 days), and century, for various relationships between time required and problem size.
- $N=$ problem size.

Time (μ sec) for problem size N	1 second	Max N Possible in		
$\lg N$	10^{300000}	$10^{1000000000}$	1 month	1 century
N	10^{6}	$3.6 \cdot 10^{9}$	$2.7 \cdot 10^{11}$	$10^{10^{14}}$
$N \lg N$	63000	$1.3 \cdot 10^{8}$	$7.4 \cdot 10^{10}$	$3.2 \cdot 10^{15}$
N^{2}	1000	60000	$1.6 \cdot 10^{6}$	$5.6 \cdot 10^{13}$
N^{3}	100	1500	14000	150000
2^{N}	20	32	41	51

Using the Notation

- Can use this order notation for any kind of real-valued function.
- We will use them to describe cost functions. Example:

```
/** Find position of X in list L, or -1 if not found. */
int find(List L, Object X) {
    int c;
    for (c = 0; L != null; L = L.next, c += 1)
        if (X.equals(L.head)) return c;
    return -1;
}
```

- Choose representative operation: number of .equals tests.
- If N is length of L, then loop does at most N tests: worst-case time is N tests.
- In fact, total \# of instructions executed is roughly proportional to N in the worst case, so can also say worst-case time is $O(N)$, regardless of units used to measure.
- Use $N>M$ provision (in defn. of $O(\cdot)$) to ignore empty list.

Be Careful

- It's also true that the worst-case time is $O\left(N^{2}\right)$, since $N \in O\left(N^{2}\right)$ also: Big-Oh bounds are loose.
- The worst-case time is $\Omega(N)$, since $N \in \Omega(N)$, but that does not mean that the loop always takes time N, or even $K \cdot N$ for some K.
- Instead, we are just saying something about the function that maps N into the largest possible time required to process any array of length N.
- To say as much as possible about our worst-case time, we should try to give a Θ bound: in this case, we can: $\Theta(N)$.
- But again, that still tells us nothing about best-case time, which happens when we find X at the beginning of the loop. Best-case time is $\Theta(1)$.

Effect of Nested Loops

- Nested loops often lead to polynomial bounds:

```
for (int i = 0; i < A.length; i += 1)
    for (int j = 0; j < A.length; j += 1)
        if (i != j && A[i] == A[j])
            return true;
```

return false;

- Clearly, time is $O\left(N^{2}\right)$, where $N=$ A.length. Worst-case time is $\Theta\left(N^{2}\right)$.
- Loop is inefficient though:

```
for (int i = 0; i < A.length; i += 1)
    for (int j = i+1; j < A.length; j += 1)
        if (A[i] == A[j]) return true;
return false;
```

- Now worst-case time is proportional to

$$
N-1+N-2+\ldots+1=N(N-1) / 2 \in \Theta\left(N^{2}\right)
$$

(so asymptotic time unchanged by the constant-factor speed-up).

Recursion and Recurrences: Fast Growth

- Silly example of recursion. In the worst case, both recursive calls happen:

```
/** True iff X is a substring of S */
boolean occurs(String S, String X) {
    if (S.equals(X)) return true;
    if (S.length() <= X.length()) return false;
    return
        occurs(S.substring(1), X) ||
        occurs(S.substring(0, S.length()-1), X);
}
```

- Define $C(N)$ to be the worst-case cost of occurs(S,X) for S of length N, X of fixed size N_{0}, measured in \# of calls to occurs. Then

$$
C(N)=\left\{\begin{array}{lr}
1, & \text { if } N \leq N_{0}, \\
2 C(N-1)+1 & \text { if } N>N_{0}
\end{array}\right.
$$

- So $C(N)$ grows exponentially:

$$
\begin{aligned}
C(N) & =2 C(N-1)+1=2(2 C(N-2)+1)+1=\ldots=\underbrace{2(\cdots 2}_{N-N_{0}} \cdot 1+1)+\ldots+1 \\
& =2^{N-N_{0}}+2^{N-N_{0}-1}+2^{N-N_{0}-2}+\ldots+1=2^{N-N_{0}+1}-1 \in \Theta\left(2^{N}\right)
\end{aligned}
$$

Binary Search: Slow Growth

```
/** True X iff is an element of S[L .. U]. Assumes
    * S in ascending order, 0 <= L <= U-1 < S.length. */
boolean isIn(String X, String[] S, int L, int U) {
    if (L > U) return false;
    int M = (L+U)/2;
    int direct = X.compareTo(S [M]);
    if (direct < 0) return isIn(X, S, L, M-1);
    else if (direct > 0) return isIn(X, S, M+1, U);
    else return true;
}
```

- Here, worst-case time, $C(D)$, (as measured by \# of calls to .compareTo), depends on size $D=U-L+1$.
- We eliminate $\mathrm{S}[\mathrm{M}]$ from consideration each time and look at half the rest. Assume $D=2^{k}-1$ for simplicity, so:

$$
\begin{aligned}
C(D) & = \begin{cases}0, & \text { if } D \leq 0 \\
1+C((D-1) / 2), & \text { if } D>0\end{cases} \\
& =\underbrace{1+1+\ldots+1}_{k}+0 \\
& =k=\lg (D+1) \in \Theta(\lg D)
\end{aligned}
$$

Another Typical Pattern: Merge Sort

```
List sort(List L) {
    if (L.length() < 2) return L;
    Split L into L0 and L1 of about equal size;
    LO = sort(LO); L1 = sort(L1);
    return Merge of L0 and L1
}
```

Merge ("combine into a single ordered list") takes time proportional to size of its result.

- Assuming that size of L is $N=2^{k}$, worst-case cost function, $C(N)$, counting just merge time (which is proportional to \# items merged):

$$
\begin{aligned}
C(N) & =\left\{\begin{array}{lr}
0, & \text { if } N<2 ; \\
2 C(N / 2)+N, & \text { if } N \geq 2 .
\end{array}\right. \\
& =2(2 C(N / 4)+N / 2)+N \\
& =4 C(N / 4)+N+N \\
& =8 C(N / 8)+N+N+N \\
& =N \cdot 0+\underbrace{N+N+\ldots+N}_{k=\lg N} \\
& =N \lg N
\end{aligned}
$$

- In general, can say it's $\Theta(N \lg N)$ for arbitrary N (not just 2^{k}).

