CS61B Lecture #18: Assorted Topics

o Views

o Maps

e More partial implementations

e Array vs. linked: tradeoffs

e Sentinels

e Specialized sequences: stacks, queues, deques
e Circular buffering

e Recursion and stacks

e Adapters

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 1

Views

New Concept: A view is an alternative presentation of (interface to)
an existing object.

e For example, the sublist method is supposed to yield a "view of”
part of an existing list:

L: =~ at i ax ban ba‘r;ca‘r

List<String> L = new ArrayList<String>();
L.add("at"); L.add("ax"); ...
3L - - | List<String> SL = L.sublist(1,4);

e Example: after L.set(2, "bag"), value of SL.get (1) is "bag", and
after SL.set(1,"bad"), value of L.get (2) is "bad".

e Example: after SL.clear (), L will contain only "at" and "cat".
e Small challenge: "How do they do that?!"

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 2

Maps

e A Map is a kind of "modifiable function:”

package java.util;
public interface Map<Key,Value> {
Value get(Object key); // Value at KEY.
Object put(Key key, Value value); // Set get(KEY) -> VALUE

Map<String,String> f = new TreeMap<String,String>();
f.put("Paul", "George"); f.put("George", "Martin");
f.put("Dana", "John");

// Now f.get("Paul").equals("George")

// f.get("Dana") .equals("John")

// f.get("Tom") == null

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18

Map Views
public interface Map<Key,Value> { // Continuation
/* Views of Maps */

/** The set of all keys. */
Set<Key> keySet () ;

/** The multiset of all values that can be returned by get.
* (A multiset is a collection that may have duplicates). */

Collection<Value> values();

/** The set of all(key, value) pairs */
Set<Map.Entry<Key,Value>> entrySet();

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 4

View Examples

Using example from a previous slide:

Map<String,String> f = new TreeMap<String,String>();
f.put("Paul", "George"); f.put("George", "Martin");
f.put("Dana", "John");

we can take various views of f:

for (Iterator<String> i = f.keySet().iterator(); i.hasNext();)
i.next() ===> Dana, George, Paul

// or, more succinctly:

for (String name : f.keySet())
name ===> Dana, George, Paul

for (String parent : f.values())
parent === John, Martin, George

for (Map.Entry<String,String> pair : f.entrySet())
pair ===> (Dana,John), (George,Martin), (Paul,George)

f.keySet () .remove("Dana"); // Now f.get("Dana") == null

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 5

Simple Banking I: Accounts

Problem: Want a simple banking system. Can look up accounts by name
or number, deposit or withdraw, print.

Account Structure

class Account {

Account (String name, String number, int init) {
this.name = name; this.number = number;
this.balance = 1init;

1

/** Account-holder’s name */

final String name;

/** Account number */

final String number;

/** Current balance */

int balance;

/** Print THIS on STR in some useful format. */
void print(PrintStream str) { ... }

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 6

Simple Banking IT: Banks

class Bank {

/* These variables maintain mappings of String -> Account. They keep

* the set of keys (Strings) in "compareTo" order, and the set of

* values (Accounts) is ordered according to the corresponding keys. */
SortedMap<String,Account> accounts = new TreeMap<String,Account>();
SortedMap<String,Account> names = new TreeMap<String,Account>();

void openAccount(String name, int initBalance) {
Account acc =
new Account(name, chooseNumber (), initBalance);
accounts.put(acc.number, acc);
names .put (name, acc);

void deposit(String number, int amount) {
Account acc = accounts.get (number) ;
if (acc == null) ERRORC(...);
acc.balance += amount;

}

// Likewise for withdraw.

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 7

Banks (continued): Iterating

Printing out Account Data

/** Print out all accounts sorted by number on STR. */
void printByAccount(PrintStream str) {
// accounts.values() is the set of mapped-to values. Its
// iterator produces elements in order of the corresponding keys.
for (Account account : accounts.values())
account.print (str);

/** Print out all bank accounts sorted by name on STR. */
void printByName(PrintStream str) {
for (Account account : names.values())
account.print (str);

A Design Question: What would be an appropriate representation for
keeping a record of all transactions (deposits and withdrawals) against
each account?

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 8

Partial Implementations

o Besides interfaces (like List) and concrete types (like LinkedList),
Java library provides abstract classes such as AbstractList.

e Idea is to take advantage of the fact that operations are related to
each other.

e Example: once you know how to do get (k) and size () for an imple-
mentation of List, you can implement all the other methods needed
for a read-only list (and its iterators).

e Now throw in add(k,x) and you have all you need for the additional
operations of a growable list.

e Add set (k,x) and remove (k) and you can implement everything else.

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 9

public abstract class AbstractList<Item> implements List<Item>

{

Last modified: Mon Jul 5 01:24:22 2021

Example: The java.util. AbstractList helper class

/** Inherited from List */
// public abstract int size();
// public abstract Item get(int k);
public boolean contains(Object x) {
for (int i = 0; 1 < size(Q); i += 1) {
if ((x == null && get(i) == null) ||
(x '= null && x.equals(get(i))))
return true;

}

return false;

}

/* OPTIONAL: Throws exception; override to do more. */
void add(int k, Item x) {
throw new UnsupportedOperationException();

}

Likewise for remove, set

CS61B: Lecture #18 10

Example, continued: AListIterator

// Continuing abstract class AbstractList<Item>:
public Iterator<Item> iterator() { return listIterator(); }
public ListIterator<Item> listIterator() {
return new AListIterator(this);
}

private static class AListIterator implements ListIterator<Item> {
AbstractList<Item> myList;
AlListIterator (AbstractList<Item> L) { myList = L; }
/** Current position in our list. */
int where = 0;

public boolean hasNext() { return where < myList.size(); }
public Item next() { where += 1; return myList.get(where-1); }
public void add(Item x) { myList.add(where, x); where += 1; }
... previous, remove, set, eftc.

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 11

Aside: Another way to do AListIterator

It's also possible fo make the nested class non-static:

public Iterator<Item> iterator() { return listIterator(); }
public ListIterator<Item> listIterator() { return this.new AListIterator(); }

private class AListIterator implements ListIterator<Item> {
/** Current position in our list. */
int where = O;

public boolean hasNext() { return where < AbstractList.this.size(); }
public Item next() { where += 1; return AbstractList.this.get(where-1); }
public void add(Item x) { AbstractList.this.add(where, x); where += 1; }
... previous, remove, set, etc.

}

e Here, AbstractList.this means "the AbstractList I am attached
to" and X .new AListIterator means 'create a new AListIterator

that is attached to X."

e In this case you can abbreviate this.new as new and can leave of f
some AbstractList.this parts, since meaning is unambiguous.

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 12

Example: Using AbstractList
Problem: Want to create a reversed view of an existing List (same

elements in reverse order). Operations on the original list affect the
view, and vice-versa.

public class ReverselList<Item> extends AbstractList<Item> {
private final List<Item> L;

public ReverseList(List<Item> L) { this.L = L; }

public int size() { return L.size(); }

public Ttem get(int k) { return L.get(L.size()-k-1); }

public void add(int k, Item x) { L.add(L.size(O)-k, x); }

public Item set(int k, Item x) { return L.set(L.size()-k-1, x); }

public Item remove(int k) { return L.remove(L.size() - k - 1); }

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 13

Getting a View: Sublists

Problem: L.sublist(start, end) is a List that gives a view of part
of an existing list. Changes in one must affect the other. How?

// Continuation of class AbstractlList. Error checks not shown.
List<Item> sublist(int start, int end) {
return this.new Sublist(start, end);

}

private class Sublist extends AbstractList<Item> {
private 1nt start, end;
Sublist(int start, int end) { obvious }

public int size() { return end-start; }
public Item get(int k) { return AbstractlList.this.get(start+k); }

public void add(int k, Item x)
{ AbstractList.this.add(start+k, x); end += 1; }

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 14

What Does a Sublist Look Like?

e Consider SL = L.sublist(3, 5);

List
L: | —)
object
SL: | ——{ AbstractlList.this —
start: 3
end: b5

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 15

Arrays and Links

e Two main ways to represent a sequence: array and linked list
e In Java Library: ArrayList and Vector vs. LinkedList.
o Array:

- Advantages: compact, fast (©(1)) random access (indexing).
- Disadvantages: insertion, deletion can be slow (O(NV))

o Linked list:

- Advantages: insertion, deletion fast once position found.
- Disadvantages: space (link overhead), random access slow.

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 16

Implementing with Arrays

e Biggest problem using arrays is insertion/deletion in the middle of a
list (must shove things over).

e Adding/deleting from ends can be made fast:

- Double array size to grow; amortized cost constant (Lecture #15).
- Growth at one end really easy:; classical stack implementation:

add here
S.push("X"); {
S.push("Y"); S: *j RN
S.pl.lSh("Z"); size: 3 * * *
XY Z

- To allow growth at either end, use circular buffering:

add here

AREEEEE

A A
last first

- Random access still fast.

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 17

Linking

e Essentials of linking should now be familiar

e Used in Java LinkedList. One possible representation for linked
list and an iterator object over it:

L: §/¥
E 3 I'[+— LinkedList.this
— lastReturned
— here
1 | nextIndex
o 5
A
sentinel \ \ y
axolotl kludge xerophyte
L = new LinkedList<String>(); I = L.listIterator();
L.add("axolotl"); I.next();

L.add("kludge");
L.add("xerophyte") ;

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 18

Clever trick: Sentinels

e A sentinel is a dummy object containing no useful data except links.

e Used to eliminate special cases and to provide a fixed object to
point to in order to access a data structure.

e Avoids special cases ('if' statements) by ensuring that the first and
last item of a list always have (non-null) hodes—possibly sentinels—
before and after them:

® // To delete list node at p: // To add new node N before p:
p.next.prev = p.prev, N.prev = p.prev; N.next = p;
p.prev.next = p.next; p.prev.next = N;

p.prev = N;
Initially p:[4 =—pll—lf=F+171" - | =<—F1:N

2 -1 - | T7™ - p: = . - I =—1 .

——1

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 19

Specialization

e Traditional special cases of general list:

- Stack: Add and delete from one end (LIFO).
- Queue: Add at end, delete from front (FIFO).
- Dequeue: Add or delete at either end.

e All of these easily representable by either array (with circular buffer-
ing for queue or deque) or linked list.

e Java has the List types, which can act like any of these (although
with non-traditional names for some of the operations).

e Also has java.util.Stack, a subtype of List, which gives tradi-
tional names ("push”, "pop") to its operations. There is, however, no
“stack” interface.

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 20

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-
mance benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;
Call: findExit((0,0)) for each square, x,
Exit: (4, 2) * adjacent to start (in reverse):
if legal(start,x) && !isCrumb(x)
I 0,0 push x on S
77777

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 21

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-
mance benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;
Call: findExit((0,0)) for each square, x,
Exit: (4, 2) * adjacent to start (in reverse):
if legal(start,x) && !isCrumb(x)
1 | 1,0 push x on S
77777

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 22

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-
mance benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;
Call: findExit((0,0)) for each square, x,
Exit: (4, 2) * adjacent to start (in reverse):
1,1 if legal(start,x) && !'isCrumb(x)
12 | 2,0 push x on S

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 23

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-
mance benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;
Call: findExit((0,0)) for each square, x,
Exit: (4, 2) * adjacent to start (in reverse):
3 1,2 if legal(start,x) && !isCrumb(x)
12 | 2,0 push x on S
77777

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 24

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-
mance benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;
Call: findExit((0,0)) for each square, x,
Exit: (4, 2) 4 * adjacent to start (in reverse):
3 if legal(start,x) && !isCrumb(x)
12 | 2,0 push x on S
77777

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 25

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-
mance benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;
Call: findExit((0,0)) for each square, x,
Exit: (4, 2) 4 * adjacent to start (in reverse):
3 if legal(start,x) && !isCrumb(x)
1 2 5] 2,1 push x on S
77777

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 26

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-
mance benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;
Call: findExit((0,0)) for each square, x,
Exit: (4, 2) 4 * adjacent to start (in reverse):
3le 2,2 if legal(start,x) && !'isCrumb(x)
1 2 5] 3,1 push x on S

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 27

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-
mance benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;
Call: findExit((0,0)) for each square, x,
Exit: (4, 2) 4l7 * 2,3 adjacent to start (in reverse):
3le 3,2 if legal(start,x) && !'isCrumb(x)
1 2 5] 3,1 push x on S
77777

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 28

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-

mance benefit):
- Calls become "push current variables and parameters, set param-

eters to new values, and loop."
- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:

pop S into start;
if isExit(start)

leave crumb at start;
for each square, x,

adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;

for each square, x,

Call: findExit((0,0)) 8 3.3
Exit: (4, 2) 4|7« 1,3 adjacent to start (in reverse):
3le 3,2 if legal(start,x) && !'isCrumb(x)
1 2 5] 3,1 push x on S
77777

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 29

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-

mance benefit):
- Calls become "push current variables and parameters, set param-

eters to new values, and loop."
- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:

pop S into start;
if isExit(start)

leave crumb at start;
for each square, x,

adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;

for each square, x,

Call: findExit((0,0)) 8 9 4 3
Exit: (4, 2) 4|7 * 1,3 adjacent to start (in reverse):
3le 3,2 if legal(start,x) && !'isCrumb(x)
1 2 5] 3,1 push x on S
77777

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 30

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-
mance benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;
Call: findExit((0,0)) 8 9 10 for each square, x,
Exit: (4, 2) 47« 1,3 adjacent to start (in reverse):
3le 3,2 if legal(start,x) && !'isCrumb(x)
1 2 5] 3,1 push x on S
77777

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 31

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-
mance benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;
Call: findExit((0,0)) 11 8 9 10 for each square, x,
Exit: (4, 2) 47« 0,3 adjacent to start (in reverse):
3le 3,2 if legal(start,x) && !'isCrumb(x)
1 2 5] 3,1 push x on S
77777

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 32

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-
mance benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;
Call: findExit((0,0)) [z & 5 10 for each square, x,
Exit: (4, 2) 47« 0,2 adjacent to start (in reverse):
3le 3,2 if legal(start,x) && !'isCrumb(x)
1 2 5] 3,1 push x on S
77777

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 33

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-
mance benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;
Call: findExit((0,0)) [z & 5 10 for each square, x,
Exit: (4, 2) 1347 * 0,1 adjacent to start (in reverse):
3le 3,2 if legal(start,x) && !'isCrumb(x)
1 2 5] 3,1 push x on S
77777

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 34

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-
mance benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;
Call: findExit((0,0)) [z & 5 10 for each square, x,
Exit: (4, 2) 1347 * adjacent to start (in reverse):
14| 3| 6 3,2 if legal(start,x) && !'isCrumb(x)
1 2 5] 3,1 push x on S

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 35

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-
mance benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;
Call: findExit((0,0)) [z & 5 10 for each square, x,
Exit: (4, 2) 1347 15 * adjacent to start (in reverse):
14| 3] 6 4 2 if legal(start,x) && !isCrumb(x)
1 2 5] 3,1 push x on S

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 36

Stacks and Recursion

e Stacks are related to recursion. In fact, can convert any recursive
algorithm to stack-based (however, generally with no great perfor-
mance benefit):

- Calls become "push current variables and parameters, set param-
eters to new values, and loop."

- Return becomes "pop to restore variables and parameters.”

findExit (start): findExit (start):
if isExit(start) S = new empty stack;
FOUND push start on S;
else if (!isCrumb(start)) while S not empty:
leave crumb at start; pop S into start;
for each square, x, if isExit(start)
adjacent to start: FOUND
if legal(start,x) && !'isCrumb(x) else if (!isCrumb(start))
findExit (x) leave crumb at start;
Call: findExit((0,0)) [z & 5 10 for each square, x,
Exit: (4, 2) 13|47 15 % adjacent to start (in reverse):
14] 3] 6 if legal(start,x) && !isCrumb(x)
1 2 5] 3,1 push x on S
77777

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 37

Design Choices: Extension, Delegation, Adaptation

e The standard java.util.Stack type extends Vector:

class Stack<Item> extends Vector<Item> { void push(Item x) { add(x); } ... }
e Could instead have delegated to a field:

class ArrayStack<Item> {
private ArrayList<Item> repl = new ArrayList<Item>();
void push(Item x) { repl.add(x); } ...

}

e Or, could generalize, and define an adapter: a class used to make
objects of one kind behave as another:

public class StackAdapter<Item> {
private List repl,;
/** A stack that uses REPL for its storage. */
public StackAdapter(List<Item> repl) { this.repl = repl; }
public void push(Item x) { repl.add(x); } ...

}

class ArrayStack<Item> extends StackAdapter<Item> {
ArrayStack() { super(new ArrayList<Item>()); }

}

Last modified: Mon Jul 5 01:24:22 2021 CS61B: Lecture #18 38

	CS61B Lecture #18: Assorted Topics
	Views
	Maps
	Map Views
	View Examples
	Simple Banking I: Accounts
	Simple Banking II: Banks
	Banks (continued): Iterating
	Partial Implementations
	Example: The java.util.AbstractList helper class
	Example, continued: AListIterator
	Aside: Another way to do AListIterator
	Example: Using AbstractList
	Getting a View: Sublists
	What Does a Sublist Look Like?
	Arrays and Links
	Implementing with Arrays
	Linking
	Clever trick: Sentinels
	Specialization
	Stacks and Recursion
	Design Choices: Extension, Delegation, Adaptation

