CS61B Lecture \#23

Today: Backtracking searches, game trees (DSIJ, Section 6.5)

Searching by "Generate and Test"

- We've been considering the problem of searching a set of data stored in some kind of data structure: "Is $x \in S$?"
- But suppose we don't have a set S, but know how to recognize what we're after if we find it: "Is there an x such that $P(x)$?"
- If we know how to enumerate all possible candidates, can use approach of Generate and Test: test all possibilities in turn.
- Can sometimes be more clever: avoid trying things that won't work, for example.
- What happens if the set of possible candidates is infinite?

Backtracking Search

- Backtracking search is one way to enumerate all possibilities.
- Example: Knight's Tour. Find all paths a knight can travel on a chessboard such that it touches every square exactly once and ends up one knight move from where it started.
- In the example below, the numbers indicate position numbers (knight starts at 0).
- Here, knight (N) is stuck; how to handle this?

General Recursive Algorithm

```
/** Append to PATH a sequence of knight moves starting at ROW, COL
    * that avoids all squares that have been hit already and
    * that ends up one square away from ENDROW, ENDCOL. B[i][j] is
    * true iff row i and column j have been hit on PATH so far.
    * Returns true if it succeeds, else false (with no change to PATH).
    * Call initially with PATH containing the starting square, and
    * the starting square (only) marked in B. */
boolean findPath(boolean[] [] b, int row, int col,
                            int endRow, int endCol, List path) {
    if (path.size() == 64) return isKnightMove(row, col, endRow, endCol);
    for (r, c = all possible moves from (row, col)) {
            if (!b[r][c]) {
                b[r] [c] = true; // Mark the square
                path.add(new Move(r, c));
                if (findPath(b, r, c, endRow, endCol, path)) return true;
                b[r][c] = false; // Backtrack out of the move.
                path.remove(path.size()-1);
            }
    }
    return false;
}
```


Another Kind of Search: Best Move

- Consider the problem of finding the best move in a two-person game.
- One way: assign a heuristic value to each possible move and pick highest (aka static valuation).
- Otherwise, we can use a variety of heuristics. Some examples of static valuations:
- assign a maximal or minimal value to a won position (depending on side.)
- number of black pieces - number of white pieces in checkers.
- (weighted sum of white piece values) - (weighted sum of black pieces in chess), such as queen=9, rook=5, knight=bishop=3, pawn=1.
- Nearness of pieces to strategic areas (center of board).
- But this is misleading. A move might give us more pieces, but set up a devastating response from the opponent.
- So, for each move, look at opponent's possible moves, use the best move that results for the opponent as the value.
- But what if you have a great response to opponent's response?
- How do we organize this sensibly?

Game Trees

- Think of the space of possible continuations of the game as a tree.
- Each node is a position, each edge a move.

- Suppose numbers at the bottom are the values of those final positions to me. Smaller numbers are of more value to my opponent.
- What should I move? What value can I get if my opponent plays as well as possible?

Game Trees, Minimax

- Think of the space of possible continuations of the game as a tree.
- Each node is a position, each edge a move.

- Numbers are the values we guess for the positions (larger means better for me). Starred nodes would be chosen.
- I always choose child (next position) with maximum value; opponent chooses minimum value-the minimax algorithm.

Alpha-Beta Pruning

- We can prune this tree as we search it.

- At the ' \geq 5' position, I know that the opponent will not choose to move here (already has a -5 move).
- At the ' ≤-20 ' position, my opponent knows that I will never choose to move here (since I already have a -5 move).

Cutting off the Search

- If you could traverse game tree to the bottom, you'd be able to force a win (if it's possible).
- Sometimes possible near the end of a game.
- Unfortunately, game trees tend to be either infinite or impossibly large.
- So, we choose a maximum depth, and use a heuristic static valuation as the value at that depth.
- Or we might use iterative deepening, repeating the search at increasing depths until time is up.
- Much more sophisticated searches are possible, however (take CS188).

Overall Search Algorithm

- Depending on whose move it is (maximizing player or minimizing player), we'll search for a move estimated to be optimal in one direction or the other.
- Search will be exhaustive down to a particular depth in the game tree; below that, we guess values.
- Also pass α and β limits:
- High player does not care about exploring a position further after finding that its value will be larger than a position the minimizing player has already found, because the minimizing player will simply not choose a position with that larger value.
- Likewise, minimizing player won't explore a positions whose value is less than what the maximizing player can get (α).
- To start, a maximizing player will find a move with the call maxPlayerValue (current position, search depth, $-\infty,+\infty$)
- minimizing player:

$$
\text { minPlayerValue(current position, search depth, }-\infty,+\infty \text {) }
$$

Sample Tree with Alpha and Beta Values

Some Pseudocode for Searching (Maximizing Player)

```
/** The estimated minimax value of position POSN, searching up to
    * DEPTH moves ahead, assuming it is the maximizing player's move.
    * If the value is determined to be <=ALPHA, then the function
    * may return any value <=ALPHA, even if inaccurate. Likewise if the
    * value is >=BETA, it may return any value >=BETA. Assumes ALPHA<BETA. */
int maxPlayerValue(Position posn, int depth, int alpha, int beta)
{
    if (posn is a final position of the game || depth == 0)
        return staticGuess(posn);
    int bestSoFar = - m;
    for (each legal move, M, in position posn) {
        Position next = makeMove(posn, M);
        int response = minPlayerValue(next, depth-1, alpha, beta);
        if (response > bestSoFar) {
            bestSoFar = response;
            alpha = max(alpha, bestSoFar);
            if (alpha >= beta)
                return bestSoFar;
        }
    }
    return bestSoFar;
}

\section*{Some Pseudocode for Searching (Minimizing Player)}
```

/** The estimated minimax value of position POSN, searching up to
* DEPTH moves ahead, assuming it is the minimizing player's move. */
int minPlayerValue(Position posn, int depth, int alpha, int beta)
{
if (posn is a final position of the game || depth == 0)
return staticGuess(posn);
int bestSoFar = +\infty;
for (each legal move, M, in position posn) {
Position next = makeMove(posn, M);
int response = maxPlayerValue(next, depth-1, alpha, beta);
if (response < bestSoFar) {
bestSoFar = response;
beta = min(beta, bestSoFar);
if (alpha >= beta)
return bestSoFar;
}
}
return bestSoFar;
}

```
```

