
CS61B Lecture #23

Today: Backtracking searches, game trees (DSIJ, Section 6.5)

Last modified: Thu Oct 21 22:00:36 2021 CS61B: Lecture #23 1

Searching by “Generate and Test”
• We’ve been considering the problem of searching a set of data stored

in some kind of data structure: “Is x ∈ S?”

• But suppose we don’t have a set S, but know how to recognize what
we’re after if we find it: “Is there an x such that P (x)?”

• If we know how to enumerate all possible candidates, can use approach
of Generate and Test: test all possibilities in turn.

• Can sometimes be more clever: avoid trying things that won’t work,
for example.

• What happens if the set of possible candidates is infinite?

Last modified: Thu Oct 21 22:00:36 2021 CS61B: Lecture #23 2

Backtracking Search
• Backtracking search is one way to enumerate all possibilities.

• Example: Knight’s Tour. Find all paths a knight can travel on a
chessboard such that it touches every square exactly once and ends
up one knight move from where it started.

• In the example below, the numbers indicate position numbers (knight
starts at 0).

• Here, knight (N) is stuck; how to handle this?

6

5

4 7

10 2

8 3 0

N 9 1

Last modified: Thu Oct 21 22:00:36 2021 CS61B: Lecture #23 3

General Recursive Algorithm

/** Append to PATH a sequence of knight moves starting at ROW, COL

* that avoids all squares that have been hit already and

* that ends up one square away from ENDROW, ENDCOL. B[i][j] is

* true iff row i and column j have been hit on PATH so far.

* Returns true if it succeeds, else false (with no change to PATH).

* Call initially with PATH containing the starting square, and

* the starting square (only) marked in B. */

boolean findPath(boolean[][] b, int row, int col,

int endRow, int endCol, List path) {

if (path.size() == 64) return isKnightMove(row, col, endRow, endCol);

for (r, c = all possible moves from (row, col)) {

if (!b[r][c]) {

b[r][c] = true; // Mark the square

path.add(new Move(r, c));

if (findPath(b, r, c, endRow, endCol, path)) return true;

b[r][c] = false; // Backtrack out of the move.

path.remove(path.size()-1);

}

}

return false;

}

Last modified: Thu Oct 21 22:00:36 2021 CS61B: Lecture #23 4

Another Kind of Search: Best Move
• Consider the problem of finding the best move in a two-person game.

• One way: assign a heuristic value to each possible move and pick
highest (aka static valuation).

• Otherwise, we can use a variety of heuristics. Some examples of
static valuations:

– assign a maximal or minimal value to a won position (depending on
side.)

– number of black pieces − number of white pieces in checkers.

– (weighted sum of white piece values) − (weighted sum of black
pieces in chess), such as queen=9, rook=5, knight=bishop=3, pawn=1.

– Nearness of pieces to strategic areas (center of board).

• But this is misleading. A move might give us more pieces, but set up
a devastating response from the opponent.

• So, for each move, look at opponent’s possible moves, use the best
move that results for the opponent as the value.

• But what if you have a great response to opponent’s response?

• How do we organize this sensibly?
Last modified: Thu Oct 21 22:00:36 2021 CS61B: Lecture #23 5

Game Trees
• Think of the space of possible continuations of the game as a tree.

• Each node is a position, each edge a move.

-30 -5 5 15 -20 -30 9 10

My move
(maximizing)

Opponent’s move
(minimizing)

My move

Opponent’s move

• Suppose numbers at the bottom are the values of those final positions
to me. Smaller numbers are of more value to my opponent.

• What should I move? What value can I get if my opponent plays as
well as possible?

Last modified: Thu Oct 21 22:00:36 2021 CS61B: Lecture #23 6

Game Trees, Minimax
• Think of the space of possible continuations of the game as a tree.

• Each node is a position, each edge a move.

-5

-5 -20

-5 15 -20 10

-30 -5 5 15 -20 -30 9 10

*

*

* * * *

*

My move

Opponent’s move

My move

Opponent’s move

• Numbers are the values we guess for the positions (larger means
better for me). Starred nodes would be chosen.

• I always choose child (next position) with maximum value; opponent
chooses minimum value—the minimax algorithm.

Last modified: Thu Oct 21 22:00:36 2021 CS61B: Lecture #23 7

Alpha-Beta Pruning
• We can prune this tree as we search it.

-5

-5 ≤-20

-5 ≥ 5
-20

-30 -5 5
-20 -30

*

*

*
*

*

My move

Opponent’s move

My move

Opponent’s move

• At the ‘≥ 5’ position, I know that the opponent will not choose to
move here (already has a −5 move).

• At the ‘≤ −20’ position, my opponent knows that I will never choose
to move here (since I already have a −5 move).

Last modified: Thu Oct 21 22:00:36 2021 CS61B: Lecture #23 8

Cutting off the Search
• If you could traverse game tree to the bottom, you’d be able to

force a win (if it’s possible).

• Sometimes possible near the end of a game.

• Unfortunately, game trees tend to be either infinite or impossibly
large.

• So, we choose a maximum depth, and use a heuristic static valuation
as the value at that depth.

• Or we might use iterative deepening , repeating the search at increasing
depths until time is up.

• Much more sophisticated searches are possible, however (take CS188).

Last modified: Thu Oct 21 22:00:36 2021 CS61B: Lecture #23 9

Overall Search Algorithm
• Depending on whose move it is (maximizing player or minimizing player),

we’ll search for a move estimated to be optimal in one direction or
the other.

• Search will be exhaustive down to a particular depth in the game
tree; below that, we guess values.

• Also pass α and β limits:

– High player does not care about exploring a position further after
finding that its value will be larger than a position the minimizing
player has already found, because the minimizing player will simply
not choose a position with that larger value.

– Likewise, minimizing player won’t explore a positions whose value
is less than what the maximizing player can get (α).

• To start, a maximizing player will find a move with the call

maxPlayerValue(current position, search depth, −∞, +∞)

• minimizing player:

minPlayerValue(current position, search depth, −∞, +∞)

Last modified: Thu Oct 21 22:00:36 2021 CS61B: Lecture #23 10

Sample Tree with Alpha and Beta Values

-5–∞ ∞

-5–∞ ∞ -20−5 ∞

-5–∞ ∞ 5–∞ −5 -20−5 ∞

-30–∞ ∞ -5−30 ∞ 5–∞ −5 -20−5 ∞ -30−5 ∞

6−5 ∞ 7−5 6 -20−5 6

7−5 6

Last modified: Thu Oct 21 22:00:36 2021 CS61B: Lecture #23 11

Some Pseudocode for Searching (Maximizing Player)

/** The estimated minimax value of position POSN, searching up to

* DEPTH moves ahead, assuming it is the maximizing player’s move.

* If the value is determined to be <=ALPHA, then the function

* may return any value <=ALPHA, even if inaccurate. Likewise if the

* value is >=BETA, it may return any value >=BETA. Assumes ALPHA<BETA. */

int maxPlayerValue(Position posn, int depth, int alpha, int beta)

{

if (posn is a final position of the game || depth == 0)

return staticGuess(posn);

int bestSoFar = −∞;

for (each legal move, M, in position posn) {

Position next = makeMove(posn, M);

int response = minPlayerValue(next, depth-1, alpha, beta);

if (response > bestSoFar) {

bestSoFar = response;

alpha = max(alpha, bestSoFar);

if (alpha >= beta)

return bestSoFar;

}

}

return bestSoFar;

}

Last modified: Thu Oct 21 22:00:36 2021 CS61B: Lecture #23 12

Some Pseudocode for Searching (Minimizing Player)

/** The estimated minimax value of position POSN, searching up to

* DEPTH moves ahead, assuming it is the minimizing player’s move. */

int minPlayerValue(Position posn, int depth, int alpha, int beta)

{

if (posn is a final position of the game || depth == 0)

return staticGuess(posn);

int bestSoFar = +∞;

for (each legal move, M, in position posn) {

Position next = makeMove(posn, M);

int response = maxPlayerValue(next, depth-1, alpha, beta);

if (response < bestSoFar) {

bestSoFar = response;

beta = min(beta, bestSoFar);

if (alpha >= beta)

return bestSoFar;

}

}

return bestSoFar;

}

Last modified: Thu Oct 21 22:00:36 2021 CS61B: Lecture #23 13

	CS61B Lecture #23
	Searching by ``Generate and Test''
	Backtracking Search
	General Recursive Algorithm
	Another Kind of Search: Best Move
	Game Trees
	Game Trees, Minimax
	Alpha-Beta Pruning
	Cutting off the Search
	Overall Search Algorithm
	Sample Tree with Alpha and Beta Values
	Some Pseudocode for Searching (Maximizing Player)
	Some Pseudocode for Searching (Minimizing Player)

