
CS61B Lecture #25: Java Generics

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 1

The Old Days
• Java library types such as List didn’t used to be parameterized. All

Lists were lists of Objects.

• So you’d write things like this:

void max(List L) {

String s; s = "";

for (int i = 0; i < L.size(); i += 1)

if (s.compareTo((String) L.get(i)) < 0) s = (String) L.get(i);

return s;

}

• That is, you had to explicitly cast result of L.get(i) to let the
compiler know what its static type was.

• Also, when calling L.add(x), there was no check that you put only
Strings into it.

• So, starting with 1.5, the designers tried to alleviate these per-
ceived problems by introducing parameterized types, like List<String>.

• Unfortunately, it is not as simple as one might think.

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 2

Basic Parameterization
• From the definitions of ArrayList and Map in java.util:

public class ArrayList< Item > implements List<Item> {

public Item get(int i) { ... }

public boolean add(Item x) { ... }

...

}

public interface Map< Key , Value > {

Value get(Key x);

...

}

• First (boxed) occurrences of Item, Key, and Value introduce formal
type parameters, whose “values” (which are reference types) get
substituted for all the other occurrences of Item, Key, or Value

when ArrayList or Map is “called” (as in ArrayList<String>, or
ArrayList<int[]>, or Map<String, List<Particle>>).

• Other occurrences of Item, Key, and Value are uses of the formal
types, just like uses of a formal parameter in the body of a function.

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 3

Type Instantiation
• Instantiating a generic type is analogous to calling a function.

• Consider again

public class ArrayList<Item> implements List<Item> {
public Item get(int i) { ... }
public boolean add(Item x) { ... }
...

}

• When we write ArrayList<String>, we get, in effect, a new type,
somewhat like

public String ArrayList implements List<String> {
public String get(int i) { ... }
public boolean add(String x) { ... }

• And then, likewise, List<String> refers to a new interface type as
well.

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 4

Parameters on Methods
• Functions (methods) may also be parameterized by type. Example of

use from java.util.Collections:

/** A read-only list containing just ITEM. */

static < T > List<T> singleton(T item) { ... }

/** An unmodifiable empty list. */

static < T > List<T> emptyList() { ... }

The compiler figures out T in the expression singleton(x) by look-
ing at the type of x. This is a simple example of type inference.

• In the call

List<String> empty = Collections.emptyList();

the parameters obviously don’t suffice, but the compiler deduces
the parameter T from context: it must be assignable to String.

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 5

Wildcards
• Consider the definition of something that counts the number of

times something occurs in a collection of items. Could write:

/** Number of items in C that are equal to X. */

static <T> int frequency(Collection<T> c, Object x) {

int n; n = 0;

for (T y : c) {

if (x.equals(y))

n += 1;

}

return n;

}

• But we don’t really care what T is; we don’t need to declare anything
of type T in the body, because we could write instead

...

for (Object y : c) {

• Wildcard type parameters say that you don’t care what a type pa-
rameter is (i.e., it’s any subtype of Object):

static int frequency(Collection<?> c, Object x) {...}

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 6

Subtyping (I)
• What are the relationships between the types

List<String>, List<Object>, ArrayList<String>, ArrayList<Object>?

• We know that ArrayList � List and String � Object (using �
for “is a subtype of”). . .

• . . . So is List<String> � List<Object>?

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 7

Subtyping (II)
• Consider this fragment:

List<String> LS = new ArrayList<String>();

List<Object> LObj = LS; // OK??

int[] A = { 1, 2 };
LObj.add(A); // Legal, since A is an Object

String S = LS.get(0); // OOPS! A.get(0) is NOT a String,

// but spec of List<String>.get

// says that it is.

• So, having List<String> � List<Object>would violate type safety:
The compiler is wrong about the type of a value.

• So in general for T1<X> � T2<Y>, must have X = Y.

• But what about T1 and T2?

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 8

Subtyping (III)
• Now consider

ArrayList<String> ALS = new ArrayList<String>();

List<String> LS = ALS; // OK??

• In this case, everything’s fine:

– The object’s dynamic type is ArrayList<String>.

– Therefore, the methods expected for LS must be a subset of
those for ALS.

– And since the type parameters are the same, the signatures of
those methods will be the same.

– Therefore, all the legal calls on methods of LS (according to the
compiler) will be valid for the actual object pointed to by LS.

• In general, T1<X> � T2<X> if T1 � T2.

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 9

A Java Inconsistency: Arrays
• The Java language design is not entirely consistent when it comes to

subtyping.

• For the same reason that ArrayList<String> 6� ArrayList<Object>,
you’d also expect that String[] 6� Object[].

• And yet, Java does make String[] � Object[].

• And, just as explained above, one gets into trouble with

String[] AS = new String[3];

Object[] AObj = AS;

AObj[0] = new int[] { 1, 2 }; // Bad

• So in Java, the Bad line causes an ArrayStoreException—a (dy-
namic) runtime error instead of a (static) compile-time error.

• Why do it this way? Basically, because otherwise there’d be no way
to implement, e.g., ArrayList.

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 10

Type Bounds (I)
• Sometimes, your program needs to ensure that a particular type pa-

rameter is replaced only by a subtype (or supertype) of a particular
type (sort of like specifying the “type of a type.”).

• For example,

class NumericSet<T extends Number> extends HashSet<T> {

/** My minimal element */

T min() { ... }

...

}

Requires that all type parameters to NumbericSet must be subtypes
of Number (the “type bound”). T can either extend or implement the
bound, as appropriate.

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 11

Type Bounds (II)
• Another example:

/** Copy the elements of SRC into DEST. */

static <T> void copy(List<? super T> dest, List<T> src) { ... }

means that dest can be a List<Q> for any Q as long as T is a subtype
of (extends or implements) Q.

• Why not just define this as

/** Copy the elements of SRC into DEST. */

static <T> void copy(List<T> dest, List<T> src) { ... }

?

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 12

Type Bounds (II)
• Another example:

/** Copy the elements of SRC into DEST. */

static <T> void copy(List<? super T> dest, List<T> src) { ... }

means that dest can be a List<Q> for any Q as long as T is a subtype
of (extends or implements) Q.

• Why not just define this as

/** Copy the elements of SRC into DEST. */

static <T> void copy(List<T> dest, List<T> src) { ... }

?

• It would make perfect sense to copy a List<String> into a List<Object>,
but that would be disallowed with this declaration.

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 13

Type Bounds (III)
• And one more:

/** Search sorted list L for KEY, returning either its position (if

* present), or k-1, where k is where KEY should be inserted. */

static <T> int binarySearch(List<? extends Comparable<? super T>> L,

T key)

• Here, the items of L have to have a type that is comparable to T’s
or to some supertype of T.

• Does L have to be able to contain the value key?

• Why does this make sense?

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 14

Type Bounds (III)
• And one more:

/** Search sorted list L for KEY, returning either its position (if

* present), or k-1, where k is where KEY should be inserted. */

static <T> int binarySearch(List<? extends Comparable<? super T>> L,

T key)

• Here, the items of L have to have a type that is comparable to T’s
or to some supertype of T.

• Does L have to be able to contain the value key?

• Why does this make sense?

• As long as the items in L can be compared to key, it doesn’t really
matter whether they might include key (not that this is often use-
ful).

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 15

Dirty Secrets Behind the Scenes
• Java’s design for parameterized types was constrained by a desire

for backward compatibility.

• Actually, when you write

class Foo<T> {

T x; Foo<Integer> q = new Foo<Integer>();

T mogrify(T y) { ... } Integer r = q.mogrify(s);

}

Java really gives you
class Foo {

Object x; Foo q = new Foo();

Object mogrify(Object y) { ... } Integer r =

} (Integer) q.mogrify((Integer) s);

That is, it supplies the casts automatically, and also throws in some
additional checks. If it can’t guarantee that all those casts will work,
gives you a warning about “unsafe” constructs.

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 16

Limitations

Because of Java’s design choices, there are some limitations to generic
programming:

• Since all kinds of Foo or List are really the same,

– L instanceof List<String>will be true when L is a List<Integer>.

– Inside, e.g., class Foo, you cannot write new T(), new T[], or x

instanceof T.

• Primitive types are not allowed as type parameters.

– Can’t have ArrayList<int>, just ArrayList<Integer>.

– Fortunately, automatic boxing and unboxing makes this substitu-
tion easy:

int sum(ArrayList<Integer> L) {

int N; N = 0;

for (int x : L) { N += x; }

return N;

}

– Unfortunately, boxing and unboxing have significant costs.

Last modified: Sun Oct 24 13:25:13 2021 CS61B: Lecture #25 17

	CS61B Lecture #25: Java Generics
	The Old Days
	Basic Parameterization
	Type Instantiation
	Parameters on Methods
	Wildcards
	Subtyping (I)
	Subtyping (II)
	Subtyping (III)
	A Java Inconsistency: Arrays
	Type Bounds (I)
	Type Bounds (II)
	Type Bounds (III)
	Dirty Secrets Behind the Scenes
	Limitations

