CS61B Lectures \#27

Today:

- Merge sorts
- Quicksort

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.

- Already seen analysis: $\Theta(N \lg N)$.
- Good for external sorting:
- First break data into small enough chunks to fit in memory and sort.
- Then repeatedly merge into bigger and bigger sequences.
- Can merge K sequences of arbitrary size on secondary storage using $\Theta(K)$ storage:

```
Data[] V = new Data[K];
For all i, set V[i] to the first data item of sequence i;
while there is data left to sort:
    Find k so that V[k] has data and is smallest;
    Add V[k] to output sequence;
    If there is more data in sequence k, read it into V [k],
        otherwise, clear V[k];
```


Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate an iterative merge sort.

- Start with $\lg N+1$ buckets that can contain lists, initially empty.
- Bucket \#k is either empty or contains 2^{k} sorted items at any time.
- For each item in the input list, turn it into a 1-element list, and merge it into bucket 0 (or simply put it in bucket 0 if that is empty).
- You will only merge lists of length 2^{k} into bucket k. Whenever that gives a list of size 2^{k+1}, merge it into bucket $k+1$ and clear bucket k.
- When all inputs are processed, merge all the buckets into the final list.

$$
\begin{align*}
& L:(9,15,5,3,0,6,10,-1,2,20,8) \\
& \left.0: \begin{array}{l}
0 \\
1: 0 \\
2: 0 \\
3:
\end{array}\right) . \begin{array}{l}
0 \\
0
\end{array} \tag{9}
\end{align*}
$$

Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate an iterative merge sort.

- Start with $\lg N+1$ buckets that can contain lists, initially empty.
- Bucket \#k is either empty or contains 2^{k} sorted items at any time.
- For each item in the input list, turn it into a 1-element list, and merge it into bucket 0 (or simply put it in bucket 0 if that is empty).
- You will only merge lists of length 2^{k} into bucket k. Whenever that gives a list of size 2^{k+1}, merge it into bucket $k+1$ and clear bucket k.
- When all inputs are processed, merge all the buckets into the final list.

$$
L:(9,15,5,3,0,6,10,-1,2,20,8)
$$

Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate an iterative merge sort.

- Start with $\lg N+1$ buckets that can contain lists, initially empty.
- Bucket \#k is either empty or contains 2^{k} sorted items at any time.
- For each item in the input list, turn it into a 1-element list, and merge it into bucket 0 (or simply put it in bucket 0 if that is empty).
- You will only merge lists of length 2^{k} into bucket k. Whenever that gives a list of size 2^{k+1}, merge it into bucket $k+1$ and clear bucket k.
- When all inputs are processed, merge all the buckets into the final list.

$$
\begin{align*}
& L:(9,15,5,3,0,6,10,-1,2,20,8) \\
& \begin{array}{l}
0: 1 \bullet \longrightarrow(9) \xrightarrow{\text { Merge }} \\
1: 0 \\
2: 0 \\
3: 0 \\
3
\end{array} \tag{15}
\end{align*}
$$

Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate an iterative merge sort.

- Start with $\lg N+1$ buckets that can contain lists, initially empty.
- Bucket \#k is either empty or contains 2^{k} sorted items at any time.
- For each item in the input list, turn it into a 1-element list, and merge it into bucket 0 (or simply put it in bucket 0 if that is empty).
- You will only merge lists of length 2^{k} into bucket k. Whenever that gives a list of size 2^{k+1}, merge it into bucket $k+1$ and clear bucket k.
- When all inputs are processed, merge all the buckets into the final list.

$$
\begin{aligned}
& L:(9,15,5,3,0,6,10,-1,2,20,8) \\
& \begin{array}{l}
0: \\
1: \\
1: \\
3 \\
3 \\
3 \\
0 \\
0
\end{array}
\end{aligned}
$$

Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate an iterative merge sort.

- Start with $\lg N+1$ buckets that can contain lists, initially empty.
- Bucket \#k is either empty or contains 2^{k} sorted items at any time.
- For each item in the input list, turn it into a 1-element list, and merge it into bucket 0 (or simply put it in bucket 0 if that is empty).
- You will only merge lists of length 2^{k} into bucket k. Whenever that gives a list of size 2^{k+1}, merge it into bucket $k+1$ and clear bucket k.
- When all inputs are processed, merge all the buckets into the final list.

$$
\begin{align*}
& L:(9,15,5,3,0,6,10,-1,2,20,8) \\
& 0: 0 \tag{9,15}\\
& 1: 01-(9,15) \\
& 2: 0 \\
& 3: 0
\end{align*}
$$

Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate an iterative merge sort.

- Start with $\lg N+1$ buckets that can contain lists, initially empty.
- Bucket \#k is either empty or contains 2^{k} sorted items at any time.
- For each item in the input list, turn it into a 1-element list, and merge it into bucket 0 (or simply put it in bucket 0 if that is empty).
- You will only merge lists of length 2^{k} into bucket k. Whenever that gives a list of size 2^{k+1}, merge it into bucket $k+1$ and clear bucket k.
- When all inputs are processed, merge all the buckets into the final list.

$$
\begin{align*}
& \text { L: }(9,15,5,3,0,6,10,-1,2,20,8) \\
& \begin{array}{l}
0: 0 \\
1 \\
1 \\
\text { 1: } \\
\text { 3: } \\
3
\end{array} \tag{5}
\end{align*}
$$

Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate an iterative merge sort.

- Start with $\lg N+1$ buckets that can contain lists, initially empty.
- Bucket \#k is either empty or contains 2^{k} sorted items at any time.
- For each item in the input list, turn it into a 1-element list, and merge it into bucket 0 (or simply put it in bucket 0 if that is empty).
- You will only merge lists of length 2^{k} into bucket k. Whenever that gives a list of size 2^{k+1}, merge it into bucket $k+1$ and clear bucket k.
- When all inputs are processed, merge all the buckets into the final list.

$$
L:(9,15,5,3,0,6,10,-1,2,20,8)
$$

Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate an iterative merge sort.

- Start with $\lg N+1$ buckets that can contain lists, initially empty.
- Bucket \#k is either empty or contains 2^{k} sorted items at any time.
- For each item in the input list, turn it into a 1-element list, and merge it into bucket 0 (or simply put it in bucket 0 if that is empty).
- You will only merge lists of length 2^{k} into bucket k. Whenever that gives a list of size 2^{k+1}, merge it into bucket $k+1$ and clear bucket k.
- When all inputs are processed, merge all the buckets into the final list.

$$
\begin{align*}
& \text { L: }(9,15,5,3,0,6,10,-1,2,20,8) \\
& 0: 1 \cdot(5) \frac{\text { Merge }}{15} \tag{3}\\
& \text { 1: } 1 \bullet(9,15) \\
& \text { 2: } \\
& \text { 3: } 0
\end{align*}
$$

Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate an iterative merge sort.

- Start with $\lg N+1$ buckets that can contain lists, initially empty.
- Bucket \#k is either empty or contains 2^{k} sorted items at any time.
- For each item in the input list, turn it into a 1-element list, and merge it into bucket 0 (or simply put it in bucket 0 if that is empty).
- You will only merge lists of length 2^{k} into bucket k. Whenever that gives a list of size 2^{k+1}, merge it into bucket $k+1$ and clear bucket k.
- When all inputs are processed, merge all the buckets into the final list.

$$
\begin{aligned}
& L:(9,15,5,3,0,6,10,-1,2,20,8) \\
& \quad \begin{array}{l}
0: 0 \\
1: 1 \\
2: \\
3: 0 \\
3
\end{array} \quad(9,15) \xrightarrow{0} \quad
\end{aligned}
$$

Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate an iterative merge sort.

- Start with $\lg N+1$ buckets that can contain lists, initially empty.
- Bucket \#k is either empty or contains 2^{k} sorted items at any time.
- For each item in the input list, turn it into a 1-element list, and merge it into bucket 0 (or simply put it in bucket 0 if that is empty).
- You will only merge lists of length 2^{k} into bucket k. Whenever that gives a list of size 2^{k+1}, merge it into bucket $k+1$ and clear bucket k.
- When all inputs are processed, merge all the buckets into the final list.

$$
L:(9,15,5,3,0,6,10,-1,2,20,8)
$$

$$
\text { Merge }(3,5,9,15)
$$

Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate an iterative merge sort.

- Start with $\lg N+1$ buckets that can contain lists, initially empty.
- Bucket \#k is either empty or contains 2^{k} sorted items at any time.
- For each item in the input list, turn it into a 1-element list, and merge it into bucket 0 (or simply put it in bucket 0 if that is empty).
- You will only merge lists of length 2^{k} into bucket k. Whenever that gives a list of size 2^{k+1}, merge it into bucket $k+1$ and clear bucket k.
- When all inputs are processed, merge all the buckets into the final list.

$$
\begin{aligned}
& L:(9,15,5,3,0,6,10,-1,2,20,8) \\
& \left.\begin{array}{l}
\text { M }: 0 \\
1: 0 \\
2: 0 \\
3: 0
\end{array}\right)(3,5,9,15)
\end{aligned}
$$

Illustration of Internal Merge Sort (II)

$$
L:(9,15,5,3,0,6,10,-1,2,20,8)
$$

Final Step: Merge all the lists into ($-1,0,2,3,5,6,8,9,10,15,20$

Quicksort: Speed through Probability

Idea:

- Partition data into pieces: everything $>$ a pivot value at the high end of the sequence to be sorted, and everything \leq on the low end.
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are "small enough" and do insertion sort on the whole thing.
- Reason: insertion sort has low constant factors. By design, no item will move out of its piece [why?], so when pieces are small, \#inversions is, too.
- Have to choose pivot well. E.g.: median of first, last and middle items of sequence.

Example of Quicksort

- In this example, we continue until pieces are size ≤ 4.
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

16	10	13	18	-4	-7	12	-5	19		5	0	22		29	34	-1*		
-4	-5	-7	-1	18	13	12	10		9	15		0	22	29			16*	
-4	-5	-7	-1	15	13	12*	10		0	16		19*	22		34		18	
-4	-5	-7	-1	10	0	12		5	13		16	18		19	2	9	34	22

- Now everything is "close to" right, so just do insertion sort:

-7	-5	-4	-1	0	10	12	13	15	16	18	19	22	29	34

Performance of Quicksort

- Probabalistic time:
- If choice of pivots good, divide data in two each time: $\Theta(N \lg N)$ with a good constant factor relative to merge or heap sort.
- If choice of pivots bad, most items on one side each time: $\Theta\left(N^{2}\right)$.
- $\Omega(N \lg N)$ in best case, so insertion sort better for nearly ordered input sets.
- Interesting point: randomly shuffling the data before sorting makes $\Omega\left(N^{2}\right)$ time very unlikely!

Quick Selection

The Selection Problem: for given k, find $k^{\text {th }}$ smallest element in data.

- Obvious method: sort, select element \#k, time $\Theta(N \lg N)$.
- If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
- Go through array, keep smallest k items.
- Get probably $\Theta(N)$ time for all k by adapting quicksort:
- Partition around some pivot, p, as in quicksort, arrange that pivo \dagger ends up at dividing line.
- Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m$.
- If $m=k$, you're done: p is answer.
- If $m>k$, recursively select $k^{\text {th }}$ from left half of sequence.
- If $m<k$, recursively select $(k-m-1)^{\text {th }}$ from right half of sequence.

Selection Example

Problem: Find just item \#10 in the sorted version of array:

Initial contents:

51	60	21	-4	37	4	49	10	$40 *$	59	0	13	2	39	11	46	31
0																

Looking for \#10 to left of pivot 40:

13	31	21	-4	37	4^{\star}	11	10	39	2	0	40	59	51	49	46	60
0																

Looking for \#6 to right of pivot 4:

| -4 | 0 | 2 | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 47 | 47 | 13 | 11 | 10 | 39 | 21 | 31^{\star} | 40 | 59 | 51 | 49 | 46 | 60 |
| 4 | | | | | | | | | | | | | | |

Looking for \#1 to right of pivot 31:

$$
\begin{array}{|l|l|l||l||l|l|l|l||c||c|c||c||c|c|c|c|c|}
\hline-4 & 0 & 2 & 4 & 21 & 13 & 11 & 10 & 31 & 39 & 37 & 40 & 59 & 51 & 49 & 46 & 60 \\
\hline 9 & & & & & \\
\hline
\end{array}
$$

Just two elements; just sort and return \#1:

| -4 | 0 | 2 | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 4 | 21 | 13 | 11 | 10 | 31 | 37 | 39 | 40 | 59 | 51 | 49 | 46 | 60 |
| 9 | | | | | | | | | | | | | | |

Result: 39

Selection Performance

- For this algorithm, if m roughly in middle each time, cost is

$$
\begin{aligned}
C(N) & = \begin{cases}1, & \text { if } N=1, \\
N+C(N / 2), & \text { otherwise. }\end{cases} \\
& =N+N / 2+\ldots+1 \\
& =2 N-1 \in \Theta(N)
\end{aligned}
$$

- But in worst case, get $\Theta\left(N^{2}\right)$, as for quicksort.
- By another, non-obvious algorithm, can get $\Theta(N)$ worst-case time for all k (take CS170).

