C561B Lectures \#28

Today:

- Lower bounds on sorting by comparison
- Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Better than $N \lg N$?

- Can prove that if all you can do to keys is compare them, then sorting must take $\Omega(N \lg N)$.
- Basic idea: there are N ! possible ways the input data could be scrambled.
- Therefore, your program must be prepared to do N ! different combinations of data-moving operations.
- Therefore, there must be N ! possible combinations of outcomes of all the if-tests in your program, since those determine what move gets moved where (we're assuming that comparisons are 2-way).

Decision Tree Height \propto Sorting time

Necessary Choices

- Since each if-test goes two ways, number of possible different outcomes for k if-tests is 2^{k}.
- Thus, need enough tests so that $2^{k} \geq N!$, which means $k \geq \lg N!$.
- Using Stirling's approximation,

$$
\begin{aligned}
N! & \in \sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N}\left(1+\Theta\left(\frac{1}{N}\right)\right), \\
\lg (N!) & \in \frac{1}{2}(\lg 2 \pi+\lg N)+N \lg N-N \lg e+\lg \left(1+\Theta\left(\frac{1}{N}\right)\right) \\
& =\Theta(N \lg N)
\end{aligned}
$$

- This tells us that k, the worst-case number of tests needed to sort N items by comparison sorting, is in $\Omega(N \lg N)$: there must be cases where we need (some multiple of) $N \lg N$ comparisons to sort N things.

Beyond Comparison: Distribution

- But suppose we can do more than compare keys?
- For example, how can we sort a set of N different integer keys whose values range from 0 to $k N$, for some small constant k ?
- One technique is distribution sorting:
- Put the integers into N buckets; integer p goes to bucket $\lfloor p / k\rfloor$.
- At most k keys per bucket, so catenate and use insertion sort, which will now be fast.
- E.g., $k=2, N=10$:

Start:

- Now insertion sort is fast. Putting the data in buckets takes time $\Theta(N)$, and insertion sort takes $\Theta(k N)$. When k is fixed (constant), we have sorting in time $\Theta(N)$.

Distribution Counting

- Another technique: count the number of items $<1,<2$, etc.
- If $M_{p}=$ \#items with value $<p$, then in sorted order, the $j^{\text {th }}$ item with value p must be item $\# M_{p}+j$.
- Suppose that one has a set of numbers in the range $[0,1000$) (possibly with duplicates) and that exactly 15 of them are less than 50 , which is also in the set. Then the result of sorting will look like this:

- In other words, the count of numbers $<k$ gives the index of k in the output array.
- If there are N items in the range $0 . . M-1$, this gives another linear-time- $\Theta(M+N)$)-algorithm (We include M and N here to allow for both duplicates and for cases where $M \gg N$.)
- [Postscript on notation: the notations $[A, B],(A, B),[A, B)$, and $(A, B]$ above refer to intervals.

The use of parentheses vs. square brackets reflects the distinction between open and closed intervals. Thus $x \in[A, B]$ iff $A \leq x \leq B$, while $x \in[A, B)$ iff $A \leq x<B$, etc.]

Distribution Counting Example

- Suppose all items are between 0 and 9 as in this example:

7	0	4	0	9			9	1	9	5	3	7	3	1	6	7	4	2	0
3		3			2		2		1	1		3	0		3	Counts			
0		1			3		4		5	6		7	8		9				
0		3			7		9		11	12		13	16		16	Running sum			
0								3	3						7	7	9	9	9
0			3				6			9		11					16		

- "Counts" line gives \# occurrences of each key.
- "Running sum" gives cumulative count of keys < each value...
- ... which tells us where to put each key:
- The first instance of key k goes into slot m, where m is the number of key instances that are $<k$; next k goes into slot $m+1$, etc.

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	14	16	16
0	1	2	3	4	5	6	7	8	9

													7			

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

1	3	6	7	9	11	12	14	16	16
0	1	2	3	4	5	6	7	8	9

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

1	3	6	7	10	11	12	14	16	16
0	1	2	3	4	5	6	7	8	9

0									4				7			

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

2	3	6	7	10	11	12	14	16	16
0	1	2	3	4	5	6	7	8	9

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

2	3	6	7	10	11	12	14	16	17
0	1	2	3	4	5	6	7	8	9

| 0 | 0 | | | | | | | | 4 | | | | 7 | | | 9 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Output

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

2	4	6	7	10	11	12	14	16	17
0	1	2	3	4	5	6	7	8	9

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

2	4	6	7	10	11	12	14	16	18
0	1	2	3	4	5	6	7	8	9

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

2	5	6	7	10	11	12	14	16	18
0	1	2	3	4	5	6	7	8	9

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

2	5	6	7	10	11	12	14	16	19
0	1	2	3	4	5	6	7	8	9

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

2	5	6	7	10	12	12	14	16	19
0	1	2	3	4	5	6	7	8	9

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

2	5	6	8	10	12	12	14	16	19
0	1	2	3	4	5	6	7	8	9

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

2	5	6	8	10	12	12	15	16	19
0	1	2	3	4	5	6	7	8	9

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

2	5	6	9	10	12	12	15	16	19
0	1	2	3	4	5	6	7	8	9

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

2	6	6	9	10	12	12	15	16	19
0	1	2	3	4	5	6	7	8	9

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

2	6	6	9	10	12	13	15	16	19
0	1	2	3	4	5	6	7	8	9

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

2	6	6	9	10	12	13	16	16	19
0	1	2	3	4	5	6	7	8	9

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

2	6	6	9	11	12	13	16	16	19
0	1	2	3	4	5	6	7	8	9

0	0		1	1	1		3	3	4	4	5	6	7	7	7	9	9	9
0											Output							

Distribution Counting Example (II)

7	0	4	0	9	1	9	1	9	5	3	7	3	1	6	7	4	2	0

3	3	1	2	2	1	1	3	0	3
0	1	2	3	4	5	6	7	8	9

0	3	6	7	9	11	12	13	16	16
0	1	2	3	4	5	6	7	8	9

2	6	7	9	11	12	13	16	16	19
0	1	2	3	4	5	6	7	8	9

0	0		1	1	1	2	3	3	4	4	5	6	7	7	7	9	9	9
0											Output							

Distribution Counting Example (II)

Radix Sort

Idea: Sort keys one character at a time.

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort)
- LSD radix sort is venerable: used for punched cards. Example:

Initial: set, cat, cad, con, bat, can, be, let, bet

$$
\begin{aligned}
& \text { bat, be, bet, cad, can, cat, con, let, set }
\end{aligned}
$$

MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

A	posn
* set, cat, cad, con, bat, can, be, let, bet	0
* bat, be, bet / cat, cad, con, can / let / set	1
bat / \& be, bet / cat, cad, con, can / let / set	2
bat / be / bet / \& cat, cad, con, can / let / set	1
bat / be / bet / cat, cad, can / con / let / set	2
bat / be / bet / cad / can / cat / con / let / set	

- Here, slashes divide partially sorted sublists that will never be moved into the space occupied by other sublists.
- Asterisks mark a sublist to be sorted on some character position.

Performance of Radix Sort

- Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sort times as functions of \#records.
- How to compare?
- To have N different records, one must have keys at least $\Theta(\lg N)$ long [why?]
- Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- So $N \lg N$ comparisons really means $N(\lg N)^{2}$ operations.
- While radix sort would take $B=N \lg N$ time for N records with minimal-length $(\lg N)$ keys.
- On the other hand, we must work to get good constant factors with radix sort.

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- Given balance, same performance as heapsort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$
\Theta(N+N \lg N)=\Theta(N \lg N)
$$

Summary

- Insertion sort: $\Theta(N k)$ comparisons and moves, where k is maximum amount data is displaced from final position.
- Good for small datasets or almost ordered data sets.
- Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O\left(N^{2}\right)$.
- Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
- Heapsort, treesort with guaranteed balance: $\Theta(N \lg N)$ guaranteed.
- Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.

