
CS61B Lecture #29

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 1



Balanced Search: The Problem
• Why are search trees important?

– Insertion/deletion fast (on every operation, unlike hash table,
which has to expand from time to time).

– Support range queries, sorting (unlike hash tables)

• ButO(lgN) performance from binary search tree requires remaining
keys be divided ≈ by some some constant > 1 at each node.

• In other words, that tree be “bushy”

• “Stringy” trees (most inner nodes with one child) perform like linked
lists.

• It suffices that heights of any two subtrees of a node always differ
in height by no more than some constant factor C > 0.

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 2



Example of Direct Approach: B-Trees

10 20 30 40 50 60 95 100 120 130 140 150

25 55 90 125

115

• Order M B-tree is an M-ary search tree, M > 2.

• For example, if M = 4, non-root nodes have at least 2 nodes, so we
also call these (2, 4) (or 2-4) trees.

• Obeys the search-tree property:

– Keys are sorted in each node.

– All keys in subtrees to the left of a key, K, are < K, and all to
the right are > K.

• Children at the bottom of tree are all empty (don’t really exist) and
equidistant from root.

• Searching is a simple generalization of binary search.

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 3



Example of Direct Approach: B-Trees

10 20 30 40 50 60 95 100 120 130 140 150

25 55 90 125

115

Idea: If the tree grows/shrinks only at the root, then the two sides
always have same height.

• Each node, except the root, has from ⌈M/2⌉ to M children, and one
key “between” each two children.

• The root has from 2 to M children (in a non-empty tree).

• Insertion: add to nodes just above the (empty) leaves; split overfull
nodes as needed, moving one key up to its parent.

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 4



Sample Order 4 B-tree ((2,4) Tree)

10 20 30 40* 50 60 95 100 120 130 140 150

25 55 90 125

115

• Crossed lines show path when finding 40.

• Keys on either side of each child pointer in path bracket 40.

• Each node has at least 2 children, and all leaves (little circles) are
at the bottom, so height must be O(lgN).

• In real-life, B-trees are stored on secondary storage, and the order
is typically much bigger

– comparable to the size of a disk sector, page, or other convenient
unit of I/O.

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 5



Inserting in (2, 4) tree (Simple Case)
• Start:

5 10 20 25 30 40 50

15 35 45

• Insert 7:

5 7* 10 20 25 30 40 50

15 35 45

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 6



Inserting in B-Tree (Splitting)
• Insert 27:

5 7 10 20 25 27* 30 40 50

15 35 45(too big)

5 7 10 20 27 30 40 50

15 25* 35 45(too big)

5 7 10 20 27 30 40 50

15 35 45

25*(new root)

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 7



Deleting Keys from B-tree
• Remove 20 from last tree.

5 7 10 27 30 40 50

15 35 45

25

(too small)

(combine)

5 7 10 15 27 30 40 50

35 45

25

(too big)

5 10 15 27 30 40 50

7 35 45

25

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 8



Red-Black Trees
• A Red-black tree is a binary search tree with additional constraints

that limit how unbalanced it can be.

• Thus, searching is always O(lgN).

• Used for Java’s TreeSet and TreeMap types.

• When items are inserted or deleted, the tree is rotated and recolored
as needed to restore balance.

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 9



Red-Black Tree Constraints

10 20 30 40 50

5 25

15

45

35

1. Each node is (conceptually) colored red or black.

2. Root is black.

3. Every leaf node contains no data (as for B-trees) and is black.

4. Every leaf has same number of black ancestors.

5. Every internal node has two children.

6. Every red node has two black children.

• Conditions 4, 5, and 6 guarantee O(lgN) searches.

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 10



Red-Black Trees and (2,4) Trees
• Every red-black tree corresponds to a (2,4) tree, and the operations

on one correspond to those on the other.

• Each node of (2,4) tree corresponds to a cluster of 1–3 red-black
nodes in which the top node is black and any others are red.

5 10 20 25 30 40 50

15 35 45

10 20 30 40 50

5 25

15

45

35

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 11



Additional Constraints: Left-Leaning Red-Black Trees
• A node in a (2,4) or (2,3) tree with three children may be represented

in two different ways in a red-black tree:

5 10

5

10

10

5

• We can considerably simplify insertion and deletion in a red-black
tree by always choosing the option on the left.

• With this constraint, there is a one-to-one relationship between
(2,4) trees and red-black trees.

• The resulting trees are called left-leaning red-black trees.

• As a further simplification, let’s restrict ourselves to red-black
trees that correspond to (2,3) trees (whose nodes have no more
than 3 children), so that no red-black node has two red children.

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 12



Red-Black Insertion and Rotations
• Insert at bottom just as for binary tree (color red except when tree

initially empty).

• Then rotate (and recolor) to restore red-black property, and thus
balance.

• Rotation of trees preserves binary tree property, but changes balance.

A C

B
E

D

C E

D
A

B
D.rotateRight()

B.rotateLeft()

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 13



Rotations and Recolorings
• For our purposes, we’ll augment the general rotation algorithms with

some recoloring.

• Transfer the color from the original root to the new root, and color
the original root red. Examples:

C E

D
A

B

A C

B
E

D

C E

D
A

B

A C

B
E

D

• Neither of these changes the number of black nodes along any path
between the root and the leaves.

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 14



Splitting by Recoloring
• Our algorithms will temporarily create nodes with too many children,

and then split them up.

• A simple recoloring allows us to split nodes. We’ll call it colorFlip:

5 15

10

5 15

10

5 10 15

· · ·· · ·

5 15

· · · 10 · · ·

• Here, key 10 joins the parent node, splitting the original.

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 15



The Algorithm (Sedgewick)
• We posit a binary-tree type RBTree: basically ordinary BST nodes

plus color.

• Insertion is the same as for ordinary BSTs, but we add some fixups
to restore the red-black properties.

RBTree insert(RBTree tree, KeyType key) {
if (tree == null)

return new RBTree(key, null, null, RED);

int cmp = key.compareTo(tree.label());

else if (cmp < 0) tree.setLeft(insert(tree.left(), key));

else tree.setRight(insert(tree.right(), key));

return fixup(tree); // Only line that’s all new!

}

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 16



Fixing Up the Tree
• As we return back up the BST, we restore the left-leaning red-black

properties, and limit ourselves to red-black trees that correspond
to (2,3) trees by applying the following (in order) to each node:

• Fixup 1: Convert right-leaning trees to left-leaning:

B

D

A C E

D

B

A C

E

if (tree.right().isRed()

&& tree.left().isBlack()) {

tree.rotateLeft();

}

Sometimes, node B will be red, so that both B and D end up red. This
is fixed by. . .

• Fixup 2: Rotate linked red nodes into a normal 4-node (temporarily).

F

D

B

A C

E

G

D

B F

A C E G

if (tree.left().isRed() &&

tree.left().left().isRed())

tree.rotateRight();

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 17



Fixing Up the Tree (II)
• Fixup 3: Break up 4-nodes into 3-nodes or 2-nodes.

D

B F

A C E G

D

B F

A C E G

if (tree.left().isRed() &&

tree.right().isRed())

colorFlip(tree);

• Fixup 4: As a result of other fixups, or of insertion into the empty
tree, the root may end up red, so color the root black after the rest
of insertion and fixups are finished. (Not part of the fixup function;
just done at the end).

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 18



Example of Left-Leaning 2-3 Red-Black Insertion
• Insert 0 into initial tree on left. No fixups needed.

5 20

10

40 60

50

80

90

70

30

0

5 20

10

40 60

50

80

90

70

30

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 19



Insertion Example (II)
• Instead of 0, let’s insert 6, leading to the tree on the left. This is

right-leaning, so apply Fixup 1:

6

5 20

10

40 60

50

80

90

70

30

5

6 20

10

40 60

50

80

90

70

30

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 20



Insertion Example (III)
• Now consider inserting 85. We need fixup 1 first.

5 20

10

85

40 60

50

80

90

70

30

5 20

10

80

40 60

50

85

90

70

30

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 21



Insertion Example (IIIa)
• Now apply fixup 2.

5 20

10

80

40 60

50

85

90

70

30

5 20

10

40 60 80 90

50 85

70

30

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 22



Insertion Example (IIIb)
• This gives us a 4-node, so apply fixup 3.

5 20

10

40 60 80 90

50 85

70

30

5 20

10

40 60 80 90

50 85

70

30

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 23



Insertion Example (IIIc)
• This gives us another 4-node, so apply fixup 3 again.

5 20

10

40 60 80 90

50 85

70

30

5 20

10

40 60 80 90

50 85

70

30

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 24



Insertion Example (IIId)
• This gives us a right-leaning tree, so apply fixup 1.

5 20

10

40 60 80 90

50 85

70

30

5 20

10

40 60

50

30

80 90

85

70

Last modified: Sun Nov 7 20:17:40 2021 CS61B: Lecture #29 25


	CS61B Lecture #29
	Balanced Search: The Problem
	Example of Direct Approach: B-Trees
	Sample Order 4 B-tree ((2,4) Tree)
	Inserting in (2, 4) tree (Simple Case)
	Inserting in B-Tree (Splitting)
	Deleting Keys from B-tree
	Red-Black Trees
	Red-Black Tree Constraints
	Red-Black Trees and (2,4) Trees
	Additional Constraints: Left-Leaning Red-Black Trees
	Red-Black Insertion and Rotations
	Rotations and Recolorings
	Splitting by Recoloring
	The Algorithm (Sedgewick)
	Fixing Up the Tree
	Fixing Up the Tree (II)
	Example of Left-Leaning 2-3 Red-Black Insertion
	Insertion Example (II)
	Insertion Example (III)
	Insertion Example (IIIa)
	Insertion Example (IIIb)
	Insertion Example (IIIc)
	Insertion Example (IIId)

