
Recreation

Prove that ⌊(2 +
√
3)n⌋ is odd for all integer n ≥ 0.

[Source: D. O. Shklarsky, N. N. Chentzov, I. M. Yaglom, The USSR Olympiad Problem

Book, Dover ed. (1993), from the W. H. Freeman edition, 1962.]

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 1

CS61B Lecture #3: Values and Containers
• Labs are normally due at midnight Friday. Last week’s lab, however,

is due this coming Friday at midnight.

• Today. Simple classes. Scheme-like lists. Destructive vs. non-
destructive operations. Models of memory.

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 2

Values and Containers
• Values are numbers, booleans, and pointers. Values never change.

(So, for example, the assignment 3 = 2 would be invalid.)

3 ’a’ true

• Simple containers contain values:

3x: L: p:

Examples: variables, fields, individual array elements, parameters.
The contents of containers can change.

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 3

Structured Containers

Structured containers contain (0 or more) other containers:

3

h t

3h:

t:

42

0

17

1

9

2

420

171

92

Class Object Array Object Empty Object

Alternative
Notation

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 4

Pointers
• Pointers (or references) are values that reference (point to) con-

tainers.

• One particular pointer, called null, points to nothing.

• In Java, structured containers contain only simple containers, but
pointers allow us to build arbitrarily big or complex structures any-
way.

0 1

3

0

9

1

17

0

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 5

Containers in Java
• Containers may be named or anonymous.

• In Java, all simple containers are named, all structured contain-
ers are anonymous, and pointers point only to structured containers.
(Therefore, structured containers contain only simple containers).

p: 3

h t

7

h t

simple container

(local variable)

structured containers

(anonymous)

named simple containers (fields)

within structured containers

• In Java, assignment copies values into simple containers.

• Exactly like Scheme and Python!

• (Python also has slice assignment, as in x[3:7]=..., which is short-
hand for something else entirely.)

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 6

Defining New Types of Object
• Class declarations introduce new types of objects.

• Example: list of integers:

public class IntList {
// Constructor function (used to initialize new object)

/** List cell containing (HEAD, TAIL). */

public IntList(int head, IntList tail) {
this.head = head; this.tail = tail;

}

// Names of simple containers (fields)
// WARNING: public instance variables usually bad style!

public int head;

public IntList tail;

}

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 7

Primitive Operations

IntList Q, L;

L:

Q:

L = new IntList(3, null);

Q = L;

L:

Q:

3

Q = new IntList(42, null);

L.tail = Q;

L:

Q:

3 42

L.tail.head += 1;

// Now Q.head == 43

// and L.tail.head == 43

L:

Q:

3 43

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 8

Side Excursion: Another Way to View Pointers
• Some folks find the idea of “copying an arrow” somewhat odd.

• Alternative view: think of a pointer as a label , like a street address.

• Each object has a permanent label on it, like the address plaque on
a house.

• Then a variable containing a pointer is like a scrap of paper with a
street address written on it.

• One view:

last:

result: 5 45

• Alternative view:

#7last:

#7result: 5 #3
7

45
3

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 9

Another Way to View Pointers (II)
• Assigning a pointer to a variable looks just like assigning an integer

to a variable.

• So, after executing “last = last.tail;” we have

last:

result: 5 45

• Alternative view:

#3last:

#7result: 5 #3
7

45
3

• Under alternative view, you might be less inclined to think that as-
signment would change object #7 itself, rather than just “last”.

• BEWARE! Internally, pointers really are just numbers, but Java
treats them as more than that: they have types, and you can’t just
change integers into pointers.

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 10

Destructive vs. Non-destructive

Problem: Given a (pointer to a) list of integers, L, and an integer in-
crement n, return a list created by incrementing all elements of the list
by n.

/** List of all items in P incremented by n. Does not modify

* existing IntLists. */

static IntList incrList(IntList P, int n) {
return /*(P, with each element incremented by n)*/

}
We say incrList is non-destructive, because it leaves the input objects
unchanged, as shown on the left. A destructive method may modify the
input objects, so that the original data is no longer available, as shown
on the right:

L:

Q:

3 43

5 45

After Q = incrList(L, 2):

L:

Q:

5 45

After Q = dincrList(L, 2) (destructive):

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 11

Nondestructive IncrList: Recursive

/** List of all items in P incremented by n. */

static IntList incrList(IntList P, int n) {
if (P == null)

return null;

else return new IntList(P.head+n, incrList(P.tail, n));

}

• Why does incrList have to return its result, rather than just set-
ting P?

• In the call incrList(P, 2), where P contains 3 and 43, which IntList
object gets created first?

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 12

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null) <<<
return null;

IntList result, last;

result = last

= new IntList(P.head+n, null);

while (P.tail != null) {
P = P.tail;

last.tail

= new IntList(P.head+n, null);

last = last.tail;

}
return result;

}

+

+
P: 3 43 56

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 13

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null)

return null;

IntList result, last;

result = last <<<
= new IntList(P.head+n, null);

while (P.tail != null) {
P = P.tail;

last.tail

= new IntList(P.head+n, null);

last = last.tail;

}
return result;

}

+

+
P: 3 43 56

last:

result: 5

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 14

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null)

return null;

IntList result, last;

result = last

= new IntList(P.head+n, null);

while (P.tail != null) {
P = P.tail; <<<
last.tail

= new IntList(P.head+n, null);

last = last.tail;

}
return result;

}

+

+
P: 3 43 56

last:

result: 5

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 15

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null)

return null;

IntList result, last;

result = last

= new IntList(P.head+n, null);

while (P.tail != null) {
P = P.tail;

last.tail <<<
= new IntList(P.head+n, null);

last = last.tail;

}
return result;

}

+

+
P: 3 43 56

last:

result: 5 45

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 16

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null)

return null;

IntList result, last;

result = last

= new IntList(P.head+n, null);

while (P.tail != null) {
P = P.tail;

last.tail

= new IntList(P.head+n, null);

last = last.tail; <<<
}
return result;

}

+

+
P: 3 43 56

last:

result: 5 45

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 17

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null)

return null;

IntList result, last;

result = last

= new IntList(P.head+n, null);

while (P.tail != null) {
P = P.tail; <<<
last.tail

= new IntList(P.head+n, null);

last = last.tail;

}
return result;

}

+

+
P: 3 43 56

last:

result: 5 45

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 18

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null)

return null;

IntList result, last;

result = last

= new IntList(P.head+n, null);

while (P.tail != null) {
P = P.tail;

last.tail <<<
= new IntList(P.head+n, null);

last = last.tail;

}
return result;

}

+

+
P: 3 43 56

last:

result: 5 45 58

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 19

An Iterative Version

An iterative incrList is tricky, because it is not tail recursive.
Easier to build things first-to-last, unlike recursive version:

static IntList incrList(IntList P, int n) {
if (P == null)

return null;

IntList result, last;

result = last

= new IntList(P.head+n, null);

while (P.tail != null) {
P = P.tail;

last.tail

= new IntList(P.head+n, null);

last = last.tail; <<<
}
return result;

}

+

+
P: 3 43 56

last:

result: 5 45 58

Last modified: Sun Aug 29 15:37:28 2021 CS61B: Lecture #3 20

	Recreation
	CS61B Lecture #3: Values and Containers
	Values and Containers
	Structured Containers
	Pointers
	Containers in Java
	Defining New Types of Object
	Primitive Operations
	Side Excursion: Another Way to View Pointers
	Another Way to View Pointers (II)
	Destructive vs. Non-destructive
	Nondestructive IncrList: Recursive
	An Iterative Version

