CS61B Lecture \#31

Today:

- More balanced search structures (DS(IJ), Chapter 9

Really Efficient Use of Keys: the Trie

- Haven't said much about cost of comparisons.
- For strings, worst case is length of string.
- Therefore should throw extra factor of key length, L, into costs:
- $\Theta(M)$ comparisons really means $\Theta(M L)$ operations.
- So to look for key X, keep looking at same chars of $X M$ times.
- Can we do better? Can we get search cost to be $O(L)$?

Idea: Make a multi-way decision tree, with one decision per character of key.

The Trie: Example

- Set of keys
\{a, abase, abash, abate, abbas, axolotl, axe, fabric, facet\}
- Ticked lines show paths followed for "abash" and "fabric"
- Each internal node corresponds to a possible prefix.
- Characters in path to node $=$ that prefix.

Adding Item to a Trie

- Result of adding bat and faceplate.
- New edges ticked.

A Side-Trip: Scrunching

- For speed, obvious implementation for internal nodes is array indexed by character.
- Gives $O(L)$ performance, L length of search key.
- [Looks as if independent of N, number of keys. Is there a dependence?]
- Problem: arrays are sparsely populated by non-null values-waste of space.

Idea: Put the arrays on top of each other!

- Use null (0, empty) entries of one array to hold non-null elements of another.
- Use extra markers to tell which entries belong to which array.

Scrunching Example

Small example: (unrelated to Tries on preceding slides)

- Three arrays, each indexed $0 . .9$

A2:

- Now overlay them, but keep track of the original index of each item:

Scrunching Example (contd.)

Practicum

- The scrunching idea is cute, but
- Not so good if we want to expand our trie.
- A bit complicated.
- Actually more useful for representing large, sparse, fixed tables with many rows and columns.
- Furthermore, number of children in trie tends to drop drastically when one gets a few levels down from the root.
- So in practice, might as well use linked lists to represent set of node's children...
- ... but use arrays for the first few levels, which are likely to have more children.

Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about $1 / 2$ as many nodes that are $>k$ high as there are that are k high.
- Makes searches fast with high probability.

Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about $1 / 2$ as many nodes that are $>k$ high as there are that are k high.
- Makes searches fast with high probability.

Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about $1 / 2$ as many nodes that are $>k$ high as there are that are k high.
- Makes searches fast with high probability.

Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about $1 / 2$ as many nodes that are $>k$ high as there are that are k high.
- Makes searches fast with high probability.

Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about $1 / 2$ as many nodes that are $>k$ high as there are that are k high.
- Makes searches fast with high probability.

Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about $1 / 2$ as many nodes that are $>k$ high as there are that are k high.
- Makes searches fast with high probability.

Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about $1 / 2$ as many nodes that are $>k$ high as there are that are k high.
- Makes searches fast with high probability.

Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about $1 / 2$ as many nodes that are $>k$ high as there are that are k high.
- Makes searches fast with high probability.

Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about $1 / 2$ as many nodes that are $>k$ high as there are that are k high.
- Makes searches fast with high probability.

Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about $1 / 2$ as many nodes that are $>k$ high as there are that are k high.
- Makes searches fast with high probability.

Probabilistic Balancing: Skip Lists

- A skip list can be thought of as a kind of n-ary search tree in which we choose to put the keys at "random" heights.
- More often thought of as an ordered list in which one can skip large segments.
- Typical example:

- To search, start at top layer on left, search until next step would overshoot, then go down one layer and repeat.
- In list above, we search for 125 and 127. Gray nodes are looked at; darker gray nodes are overshoots.
- Heights of the nodes were chosen randomly so that there are about $1 / 2$ as many nodes that are $>k$ high as there are that are k high.
- Makes searches fast with high probability.

Example: Adding and deleting

- Starting from initial list:

- In any order, we add 126 and 127 (choosing random heights for them), and remove 20 and 40:

- Shaded nodes here have been modified.

Summary

- Balance in search trees allows us to realize $\Theta(\lg N)$ performance.
- B-trees, red-black trees:
- Give $\Theta(\lg N)$ performance for searches, insertions, deletions.
- B-trees good for external storage. Large nodes minimize \# of I/O operations
- Tries:
- Give $\Theta(B)$ performance for searches, insertions, and deletions, where B is length of key being processed.
- But hard to manage space efficiently.
- Interesting idea: scrunched arrays share space.
- Skip lists:
- Give probable $\Theta(\lg N)$ performace for searches, insertions, deletions
- Easy to implement.
- Presented for interesting ideas: probabilistic balance, randomized data structures.

Summary of Collection Abstractions

Data Structures that Implement Abstractions

Multiset

- List: arrays, linked lists, circular buffers
- Set
- OrderedSet
* Priority Queue: heaps
* Sorted Set: binary search trees, red-black trees, B-trees, sorted arrays or linked lists
- Unordered Set: hash table

Map

- Unordered Map: hash table
- Ordered Map: red-black trees, B-trees, sorted arrays or linked lists

Corresponding Classes in Java

Multiset (Collection)

- List: ArrayList, LinkedList, Stack, ArrayBlockingQueue, ArrayDeque
- Set
- OrderedSet
* Priority Queue: PriorityQueue
* Sorted Set (SortedSet): TreeSet
- Unordered Set: HashSet

Map

- Unordered Map: HashMap
- Ordered Map (SortedMap): TreeMap

