
Lecture #32

Last modified: Sun Nov 7 22:32:24 2021 CS61B: Lecture #32 1



Git: A Case Study in System and Data-Structure
Design

• Git is a distributed version-control system, apparently the most
popular of these currently.

• Conceptually, it stores snapshots (versions) of the files and directory
structure of a project, keeping track of their relationships, authors,
dates, and log messages.

• It is distributed, in that there can be many copies of a given repository,
each supporting independent development, with machinery to transmit
and reconcile versions between repositories.

• Its operation is extremely fast (as these things go).

Last modified: Sun Nov 7 22:32:24 2021 CS61B: Lecture #32 2



A Little History
• Developed by Linus Torvalds and others in the Linux community when

the developer of their previous, propietary VCS (Bitkeeper) withdrew
the free version.

• Initial implementation effort seems to have taken about 2–3 months,
in time for the 2.6.12 Linux kernel release in June, 2005.

• As for the name, according to Wikipedia,

Torvalds has quipped about the name Git, which is British
English slang meaning “unpleasant person”. Torvalds said: “I’m
an egotistical bastard, and I name all my projects after myself.
First ’Linux’, now ’git’.” The man page describes Git as “the
stupid content tracker.”

• Initially, was a collection of basic primitives (now called “plumbing”)
that could be scripted to provide desired functionality.

• Then, higher-level commands (“porcelain”) built on top of these to
provide a convenient user interface.

Last modified: Sun Nov 7 22:32:24 2021 CS61B: Lecture #32 3



Major User-Level Features (I)
• Abstraction is of a graph of versions or snapshots (called commits)

of a complete project.

• The graph structure reflects ancestory: which versions came from
which.

• Each commit contains

– A directory tree of files (like a Unix directory).

– Information about who committed and when.

– Log message.

– Pointers to commit (or commits, if there was a merge) from which
the commit was derived.

Last modified: Sun Nov 7 22:32:24 2021 CS61B: Lecture #32 4



Conceptual Structure
• Main internal components consist of four types of object:

– Blobs: basically hold contents of files.

– Trees: directory structures of files.

– Commits: Contain references to trees and additional information
(committer, date, log message).

– Tags: References to commits or other objects, with additional
information, intended to identify releases, other important versions,
or various useful information. (Won’t mention further today).

Last modified: Sun Nov 7 22:32:24 2021 CS61B: Lecture #32 5



Commits, Trees, Files

Version
1

Version
2

Version
3

D

F1

F

G1

G

H1

H

I1

I

D

F2

F

G1

G

H1

H

I1

I

D

F2

F

G1

G

H1

H

Commits
Trees

Blobs (files)

Dashed lines link objects

that are the same

Last modified: Sun Nov 7 22:32:24 2021 CS61B: Lecture #32 6



Version Histories in Two Repositories

V1

V2

V3

V4

V5

V6

V7

Repository 1

V1

V2

V3

V4

V8

V9

Repository 2

V1

V2

V3

V4

V8

V9V5

V6

Repository 2
after pushing V6 to it

Last modified: Sun Nov 7 22:32:24 2021 CS61B: Lecture #32 7



Major User-Level Features (II)
• Each commit has a name that uniquely identifies it to all versions.

• Repositories can transmit collections of versions to each other.

• Transmitting a commit from repository A to repository B requires
only the transmission of those objects (files or directory trees)
that B does not yet have (allowing speedy updating of repositories).

• Repositories maintain named branches, which are simply identifiers
of particular commits that are updated to keep track of the most
recent commits in various lines of development.

• Likewise, tags are essentially named pointers to particular commits.
Differ from branches in that they are not usually changed.

Last modified: Sun Nov 7 22:32:24 2021 CS61B: Lecture #32 8



Internals
• Each Git repository is contained in a directory.

• Repository may either be bare (just a collection of objects and
metadata), or may be included as part of a working directory.

• The data of the repository is stored in various objects corresponding
to files (or other “leaf” content), trees, and commits.

• To save space, data in files is compressed.

• Git can garbage-collect the objects from time to time to save additional
space.

Last modified: Sun Nov 7 22:32:24 2021 CS61B: Lecture #32 9



The Pointer Problem
• Objects in Git are files. How should we represent pointers between

them?

• Want to be able to transmit objects from one repository to another
with different contents. How do you transmit the pointers?

• Only want to transfer those objects that are missing in the target
repository. How do we know which those are?

• Could use a counter in each repository to give each object there a
unique name. But how can that work consistently for two independent
repositories?

Last modified: Sun Nov 7 22:32:24 2021 CS61B: Lecture #32 10



Content-Addressable File System
• Could use some way of naming objects that is universal.

• We use the names, then, as pointers.

• Solves the “Which objects don’t you have?” problem in an obvious
way.

• Conceptually, what is invariant about an object, regardless of repository,
is its contents.

• But can’t use the contents as the name for obvious reasons.

• Idea: Use a hash of the contents as the address.

• Problem: That doesn’t work!

• Brilliant Idea: Use it anyway!!

Last modified: Sun Nov 7 22:32:24 2021 CS61B: Lecture #32 11



How A Broken Idea Can Work
• The idea is to use a hash function that is so unlikely to have a

collision that we can ignore that possibility.

• Cryptographic Hash Functions have relevant property.

• Such a function, f , is designed to withstand cryptoanalytic attacks.
In particular, should have

– Pre-image resistance: given h = f(m), should be computationally
infeasible to find such a message m.

– Second pre-image resistance: given messagem1, should be infeasible
to find m2 6= m1 such that f(m1) = f(m2).

– Collision resistance: should be difficult to find any two messages
m1 6= m2 such that f(m1) = f(m2).

• With these properties, scheme of using hash of contents as name is
extremely unlikely to fail, even when system is used maliciously.

Last modified: Sun Nov 7 22:32:24 2021 CS61B: Lecture #32 12



SHA1
• Git uses SHA1 (Secure Hash Function 1).

• Can play around with this using the hashlib module in Python3.

• All object names in Git are therefore 160-bit hash codes of contents,
in hex.

• E.g. a recent commit in the shared CS61B repository could be fetched
(if needed) with

git checkout 3b30599cc43f4616eb626f8fa4fb2d0610d97963

Last modified: Sun Nov 7 22:32:24 2021 CS61B: Lecture #32 13



Low-Level Blob Management
• You can find out the hashcode that Git uses for the blob containing

file something.java with the command

git hash-object something.java

• And if this tells you that the file would have hash code

192a0ca0d159f1550b0b5e102f7e06867cc44782

and you actually git add this file, its compressed contents will be
stored in the file

.git/objects/19/2a0ca0d159f1550b0b5e102f7e06867cc44782

and you can look at them (uncompressed) with

git cat-file -p 192a0ca0d159f1550b0b5e102f7e06867cc44782

Last modified: Sun Nov 7 22:32:24 2021 CS61B: Lecture #32 14


	Lecture #32
	Git: A Case Study in System and Data-Structure Design
	A Little History
	Major User-Level Features (I)
	Conceptual Structure
	Commits, Trees, Files
	Version Histories in Two Repositories
	Major User-Level Features (II)
	Internals
	The Pointer Problem
	Content-Addressable File System
	How A Broken Idea Can Work
	SHA1
	Low-Level Blob Management

