
CS61B Lecture #35

Today:

• Pseudo-random Numbers (Chapter 11)

• What use are random sequences?

• What are “random sequences”?

• Pseudo-random sequences.

• How to get one.

• Relevant Java library classes and methods.

• Random permutations.

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 1

Why Random Sequences?
• Choose statistical samples

• Simulations

• Random algorithms

• Cryptography:

– Choosing random keys and nonces (random one-time values used
to make messages unique.)

– Generating streams of random bits (e.g., stream ciphers encrypt
messages by xor’ing reproducible streams of pseudo-random bits
with the bits of the message.)

• And, of course, games

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 2

What Is a “Random Sequence”?
• How about: “a sequence where all numbers occur with equal frequency”?

– Like 1, 2, 3, 4, . . . ?

• Well then, how about: “an unpredictable sequence where all numbers
occur with equal frequency?”

– Like 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 0, 1, 1, 1,. . . ?

• Besides, what is wrong with 0, 0, 0, 0, . . . anyway? Can’t that occur
by random selection?

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 3

Pseudo-Random Sequences
• Even if definable, a “truly” random sequence is difficult (i.e., slow)

for a computer (or human) to produce. Must have some nondeterministic
external source. Can use:

– Periods between radioactive decays.

– Periods between keystrokes or incoming internet message.

– Coin flips.

• For most purposes, we need only a sequence that satisfies certain
statistical properties, even if deterministic (as is useful for reproducibility).

• Sometimes (e.g., cryptography) we need sequence that is hard or
impractical to predict.

• Pseudo-random sequence: deterministic sequence that passes some
given set of statistical tests that random sequences (probably) pass.

• For example, look at lengths of runs: increasing or decreasing contiguous
subsequences.

• Unfortunately, statistical criteria to be used are quite involved. For
details, see Knuth, volume 2.

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 4

Generating Pseudo-Random Sequences
• Not as easy as you might think.

• Seemingly complex jumbling methods can give rise to bad sequences.

• Linear congruential method is a simple method used by Java:

X0 = arbitrary seed

Xi = (aXi−1 + c) mod m, i > 0

• Usually, m is large power of 2.

• For best results, want a ≡ 5 mod 8, and a, c, m with no common
factors.

• This gives generator with a period of m (length of sequence before
repetition), and reasonable potency (measures certain dependencies
among adjacent Xi.)

• Also want bits of a to “have no obvious pattern” and pass certain
other tests (see Knuth).

• Java uses a = 25214903917, c = 11, m = 248, to compute 48-bit
pseudo-random numbers. It’s good enough for many purposes, but
not cryptographically secure.

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 5

What Can Go Wrong (I)?

Any one who considers arithmetical methods of producing random
digits is, of course, in a state of sin.

JOHN VON NEUMANN (1951)

• Short periods, many impossible values: E.g., a, c, m even.

• Obvious patterns. E.g., just using lower 3 bits of Xi in Java’s 48-bit
generator, to get integers in range 0 to 7. By properties of modular
arithmetic,

Xi mod 8 = (25214903917Xi−1 + 11 mod 248) mod 8

= (5(Xi−1 mod 8) + 3) mod 8

so we have a period of 8 on this generator; sequences like

0, 1, 3, 7, 1, 2, 7, 1, 4, . . .

are impossible. This is why Java doesn’t give you the raw 48 bits.

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 6

What Can Go Wrong (II)?

Bad potency leads to bad correlations.

• The infamous IBM generator RANDU: c = 0, a = 65539, m = 231.

• When RANDU is used to make 3D points: (Xi/S,Xi+1/S,Xi+2/S),
where S scales to a unit cube, . . .

• . . . points will be arranged in parallel planes with voids between. So
“random points” won’t ever get near many points in the cube:

[Credit: Luis Sanchez at English Wikipedia - Transferred from en.wikipedia to Commons
by sevela.p., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3832343]

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 7

Additive Generators
• Additive generator:

Xn =

arbitary value , n < 55
(Xn−24 +Xn−55) mod 2e, n ≥ 55

• Other choices than 24 and 55 possible.

• This one has period of 2f(255 − 1), for some f < e.

• Simple implementation with circular buffer:

i = (i+1) % 55;

X[i] += X[(i+31) % 55]; // Why +31 (55-24) instead of -24?

return X[i]; /* modulo 232 */

• where X[0 .. 54] is initialized to some “random” initial seed values.

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 8

Cryptographic Pseudo-Random Number Generators
• The simple form of linear congruential generators means that one

can predict future values after seeing relatively few outputs.

• Not good if you want unpredictable output (think on-line games involving
money or randomly generated keys for encrypting your web traffic.)

• A cryptographic pseudo-random number generator (CPRNG) has the
properties that

– Given k bits of a sequence, no polynomial-time algorithm can guess
the next bit with better than 50% accuracy.

– Given the current state of the generator, it is also infeasible to
reconstruct the bits it generated in getting to that state.

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 9

Cryptographic Pseudo-Random Number Generator
Example

• Start with a good block cipher—an encryption algorithm that encrypts
blocks of N bits (not just one byte at a time as for Enigma). AES is
an example.

• As a seed, provide a key, K, and an initialization value I .

• The jth pseudo-random number is now E(K, I + j), where E(x, y) is
the encryption of message y using key x.

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 10

Adjusting Range and Distribution
• Given raw sequence of numbers, Xi, from above methods in range

(e.g.) 0 to 248, how to get uniform random integers in range 0 to
n− 1?

• If n = 2k, is easy: use top k bits of next Xi (bottom k bits not as
“random”)

• For other n, be careful of slight biases at the ends. For example, if
we compute Xi/(2

48/n) using all integer division, and if (248/n) gets
rounded down, then you can get n as a result (which you don’t want).

• If you try to fix that by computing (248/(n−1)) instead, the probability
of getting n− 1 will be wrong.

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 11

Adjusting Range (II)
• To fix the bias problems when n does not evenly divide 248, Java

throws out values after the largest multiple of n that is less than
248:

/** Random integer in the range 0 .. n-1, n>0. */

int nextInt(int n) {
long X = next random long (0 ≤ X < 248);
if (n is 2k for some k)

return top k bits of X;

int MAX = largest multiple of n that is < 248;
while (Xi >= MAX)

X = next random long (0 ≤ X < 248);
return Xi / (MAX/n);

}

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 12

Arbitrary Bounds
• How to get arbitrary range of integers (L to U)?

• To get random float, x in range 0 ≤ x < d, compute

return d*nextInt(1<<24) / (1<<24);

• Random double a bit more complicated: need two integers to get
enough bits.

long bigRand = ((long) nextInt(1<<26) << 27)

+ (long) nextInt(1<<27);

return d * bigRand / (1L << 53);

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 13

Generalizing: Other Distributions
• Suppose we have some desired probability distribution function, and

want to get random numbers that are distributed according to that
distribution. How can we do this?

• Example: the normal distribution:

0-2 -1 1 2

1

P (Y ≤ X)

X

• Curve is the desired probability distribution. P (Y ≤ X) is the
probability that random variable Y is ≤ X .

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 14

Generalizing: Other Distributions (II)

Solution: Choose y uniformly between 0 and 1, and the corresponding x
will be distributed according to P .

0-2 -1 1 2

1
y

X
x

P (X ≤ Y)

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 15

Java Classes
• Math.random(): random double in [0..1).

• Class java.util.Random: a random number generator with constructors:

Random() generator with “random” seed (based on time).

Random(seed) generator with given starting value (reproducible).

• Methods

next(k) k-bit random integer

nextInt(n) int in range [0..n).

nextLong() random 64-bit integer.

nextBoolean(), nextFloat(), nextDouble() Next random values of other
primitive types.

nextGaussian() normal distribution with mean 0 and standard deviation
1 (“bell curve”).

• Collections.shuffle(L,R) for list L and Random R permutes L
randomly (using R).

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 16

Shuffling
• A shuffle is a random permutation of some sequence.

• Obvious dumb technique for sorting N-element list:

– Generate N random numbers

– Attach each to one of the list elements

– Sort the list using random numbers as keys.

• Can do quite a bit better:

void shuffle(List L, Random R) {
for (int i = L.size(); i > 0; i -= 1)

swap elements i-1 and R.nextInt(i) of L;

}

• Example:

Swap items 0 1 2 3 4 5
Start A♣ 2♣ 3♣ A♥ 2♥ 3♥

5 ⇐⇒ 1 A♣ 3♥ 3♣ A♥ 2♥ 2♣

4 ⇐⇒ 2 A♣ 3♥ 2♥ A♥ 3♣ 2♣

Swap items 0 1 2 3 4 5
3 ⇐⇒ 3 A♣ 3♥ 2♥ A♥ 3♣ 2♣

2 ⇐⇒ 0 2♥ 3♥ A♣ A♥ 3♣ 2♣

1 ⇐⇒ 0 3♥ 2♥ A♣ A♥ 3♣ 2♣

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 17

Random Selection
• Same technique would allow us to select N items from list:

/** Permute L and return sublist of K>=0 randomly

* chosen elements of L, using R as random source. */

List select(List L, int k, Random R) {
for (int i = L.size(); i+k > L.size(); i -= 1)

swap element i-1 of L with element

R.nextInt(i) of L;

return L.sublist(L.size()-k, L.size());

}

• Not terribly efficient for selecting random sequence of K distinct
integers from [0..N), with K ≪ N .

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 18

Alternative Selection Algorithm (Floyd)

/** Random sequence of K distinct integers

* from 0..N-1, 0<=K<=N. */

List<Integer> select(int N, int K, Random R)

{

ArrayList<Integer> S = new ArrayList<>();

for (int i = N-K; i < N; i += 1) {

// All values in S are < i

int s = R.randInt(i+1); // 0 <= s <= i < N

if (s == S.get(j) for some j)
// Insert value i (which can’t be there

// yet) after the s (i.e., at a random

// place other than the front)

S.add(j+1, i);

else

// Insert random value s (which can’t be

// there yet) at front

S.add(0, s);

}

return S;

}

Example

i s S
5 4 [4]
6 2 [2, 4]
7 5 [5, 2, 4]
8 5 [5, 8, 2, 4]
9 4 [5, 8, 2, 4, 9]

selectRandomIntegers(10, 5, R)

Last modified: Sun Nov 14 15:38:45 2021 CS61B: Lecture #35 19

	CS61B Lecture #35
	Why Random Sequences?
	What Is a ``Random Sequence''?
	Pseudo-Random Sequences
	Generating Pseudo-Random Sequences
	What Can Go Wrong (I)?
	What Can Go Wrong (II)?
	Additive Generators
	Cryptographic Pseudo-Random Number Generators
	Cryptographic Pseudo-Random Number Generator Example
	Adjusting Range and Distribution
	Adjusting Range (II)
	Arbitrary Bounds
	Generalizing: Other Distributions
	Generalizing: Other Distributions (II)
	Java Classes
	Shuffling
	Random Selection
	Alternative Selection Algorithm (Floyd)

