CS61B Lecture \#35

Today:

- Pseudo-random Numbers (Chapter 11)
- What use are random sequences?
- What are "random sequences"?
- Pseudo-random sequences.
- How to get one.
- Relevant Java library classes and methods.
- Random permutations.

Why Random Sequences?

- Choose statistical samples
- Simulations
- Random algorithms
- Cryptography:
- Choosing random keys and nonces (random one-time values used to make messages unique.)
- Generating streams of random bits (e.g., stream ciphers encrypt messages by xor'ing reproducible streams of pseudo-random bits with the bits of the message.)
- And, of course, games

What Is a "Random Sequence"?

- How about: "a sequence where all numbers occur with equal frequency"?
- Like 1, 2, 3, 4, ...?
- Well then, how about: "an unpredictable sequence where all numbers occur with equal frequency?"
- Like $0,0,0,1,1,2,2,2,2,2,3,4,4,0,1,1,1, \ldots$?
- Besides, what is wrong with $0,0,0,0, \ldots$ anyway? Can't that occur by random selection?

Pseudo-Random Sequences

- Even if definable, a "truly" random sequence is difficult (i.e., slow) for a computer (or human) to produce. Must have some nondeterministic external source. Can use:
- Periods between radioactive decays.
- Periods between keystrokes or incoming internet message.
- Coin flips.
- For most purposes, we need only a sequence that satisfies certain statistical properties, even if deterministic (as is useful for reproducibility).
- Sometimes (e.g., cryptography) we need sequence that is hard or impractical to predict.
- Pseudo-random sequence: deterministic sequence that passes some given set of statistical tests that random sequences (probably) pass.
- For example, look at lengths of runs: increasing or decreasing contiguous subsequences.
- Unfortunately, statistical criteria to be used are quite involved. For details, see Knuth, volume 2.

Generating Pseudo-Random Sequences

- Not as easy as you might think.
- Seemingly complex jumbling methods can give rise to bad sequences.
- Linear congruential method is a simple method used by Java:

$$
\begin{aligned}
X_{0} & =\text { arbitrary seed } \\
X_{i} & =\left(a X_{i-1}+c\right) \bmod m, \quad i>0
\end{aligned}
$$

- Usually, m is large power of 2 .
- For best results, want $a \equiv 5 \bmod 8$, and a, c, m with no common factors.
- This gives generator with a period of m (length of sequence before repetition), and reasonable potency (measures certain dependencies among adjacent X_{i}.)
- Also want bits of a to "have no obvious pattern" and pass certain other tests (see Knuth).
- Java uses $a=25214903917, c=11, m=2^{48}$, to compute 48-bit pseudo-random numbers. It's good enough for many purposes, but not cryptographically secure.

What Can Go Wrong (I)?

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.

JOHN VON NEUMANN (1951)

- Short periods, many impossible values: E.g., a, c, m even.
- Obvious patterns. E.g., just using lower 3 bits of X_{i} in Java's 48-bit generator, to get integers in range 0 to 7 . By properties of modular arithmetic,

$$
\begin{aligned}
X_{i} \bmod 8 & =\left(25214903917 X_{i-1}+11 \bmod 2^{48}\right) \bmod 8 \\
& =\left(5\left(X_{i-1} \bmod 8\right)+3\right) \bmod 8
\end{aligned}
$$

so we have a period of 8 on this generator; sequences like

$$
0,1,3,7,1,2,7,1,4, \ldots
$$

are impossible. This is why Java doesn't give you the raw 48 bits.

What Can Go Wrong (II)?

Bad potency leads to bad correlations.

- The infamous IBM generator RANDU: $c=0, a=65539, m=2^{31}$.
- When RANDU is used to make 3D points: $\left(X_{i} / S, X_{i+1} / S, X_{i+2} / S\right)$, where S scales to a unit cube, ...
- ... points will be arranged in parallel planes with voids between. So "random points" won't ever get near many points in the cube:

[Credit: Luis Sanchez at English Wikipedia - Transferred from en.wikipedia to Commons by sevela.p., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3832343]

Additive Generators

- Additive generator:

$$
X_{n}= \begin{cases}\text { arbitary value, } & n<55 \\ \left(X_{n-24}+X_{n-55}\right) & \bmod 2^{e}, \\ n \geq 55\end{cases}
$$

- Other choices than 24 and 55 possible.
- This one has period of $2^{f}\left(2^{55}-1\right)$, for some $f<e$.
- Simple implementation with circular buffer:

```
i = (i+1) % 55;
X[i] += X[(i+31) % 55]; // Why +31 (55-24) instead of -24?
return X[i]; /* modulo 2 }\mp@subsup{2}{}{32}*
```

- where $\mathrm{X}[0$. . 54] is initialized to some "random" initial seed values.

Cryptographic Pseudo-Random Number Generators

- The simple form of linear congruential generators means that one can predict future values after seeing relatively few outputs.
- Not good if you want unpredictable output (think on-line games involving money or randomly generated keys for encrypting your web traffic.)
- A cryptographic pseudo-random number generator (CPRNG) has the properties that
- Given k bits of a sequence, no polynomial-time algorithm can guess the next bit with better than 50\% accuracy.
- Given the current state of the generator, it is also infeasible to reconstruct the bits it generated in getting to that state.

Cryptographic Pseudo-Random Number Generator Example

- Start with a good block cipher-an encryption algorithm that encrypts blocks of N bits (not just one byte at a time as for Enigma). AES is an example.
- As a seed, provide a key, K, and an initialization value I.
- The $j^{\text {th }}$ pseudo-random number is now $E(K, I+j)$, where $E(x, y)$ is the encryption of message y using key x.

Adjusting Range and Distribution

- Given raw sequence of numbers, X_{i}, from above methods in range (e.g.) 0 to 2^{48}, how to get uniform random integers in range 0 to $n-1$?
- If $n=2^{k}$, is easy: use top k bits of next X_{i} (bottom k bits not as "random")
- For other n, be careful of slight biases at the ends. For example, if we compute $X_{i} /\left(2^{48} / n\right)$ using all integer division, and if $\left(2^{48} / n\right)$ gets rounded down, then you can get n as a result (which you don't want).
- If you try to fix that by computing $\left(2^{48} /(n-1)\right)$ instead, the probability of getting $n-1$ will be wrong.

Adjusting Range (II)

- To fix the bias problems when n does not evenly divide 2^{48}, Java throws out values after the largest multiple of n that is less than 2^{48} :

```
/** Random integer in the range 0 .. n-1, n>0. */
int nextInt(int n) {
    long X = next random long (0 \leq X < 2' );
    if (n is 2}\mp@subsup{}{}{k}\mathrm{ for some k)
        return top k bits of X;
    int MAX = largest multiple of n that is < < 248
    while ( }\mp@subsup{X}{i}{}>>= MAX
        X = next random long (0 \leq X < 2 48 );
    return }\mp@subsup{X}{i}{}/(MAX/n)
}
```


Arbitrary Bounds

- How to get arbitrary range of integers (L to U)?
- To get random float, x in range $0 \leq x<d$, compute
return $\mathrm{d} *$ nextInt $(1 \ll 24) /(1 \ll 24)$;
- Random double a bit more complicated: need two integers to get enough bits.

```
long bigRand = ((long) nextInt(1<<26) << 27)
        + (long) nextInt(1<<27);
return d * bigRand / (1L << 53);
```


Generalizing: Other Distributions

- Suppose we have some desired probability distribution function, and want to get random numbers that are distributed according to that distribution. How can we do this?
- Example: the normal distribution:

- Curve is the desired probability distribution. $P(Y \leq X)$ is the probability that random variable Y is $\leq X$.

Generalizing: Other Distributions (II)

Solution: Choose y uniformly between 0 and 1, and the corresponding x will be distributed according to P.

Java Classes

- Math.random (): random double in [0..1).
- Class java.util. Random: a random number generator with constructors: Random() generator with "random" seed (based on time).
Random(seed) generator with given starting value (reproducible).
- Methods
next $(k) k$-bit random integer
nextInt(n) int in range [0..n).
nextLong() random 64-bit integer.
nextBoolean(), nextFloat(), nextDouble() Next random values of other primitive types.
nextGaussian() normal distribution with mean 0 and standard deviation 1 ("bell curve").
- Collections.shuffle (L, R) for list L and Random R permutes L randomly (using R).

Shuffling

- A shuffle is a random permutation of some sequence.
- Obvious dumb technique for sorting N-element list:
- Generate N random numbers
- Attach each to one of the list elements
- Sort the list using random numbers as keys.
- Can do quite a bit better:

```
void shuffle(List L, Random R) \{
    for (int i \(=\) L.size(); i > 0; i -= 1)
        swap elements i-1 and R.nextInt(i) of \(L\);
\}
```

- Example:

Swap items	0	1	2	3	4	5
Start	As,	2\%	3\%	A 9	20	30
$5 \Longleftrightarrow 1$	A\%	30	3\%	A 9	20	2\%
$4 \Longleftrightarrow 2$	A\&	30	20	A 9	3\%	2%

Swap items	0	1	2	3	4	5
$3 \Longleftrightarrow 3$	A\%	30	20	A 0	3\%	2\%
$2 \Longleftrightarrow 0$	20	30	A	A	3\%	2\%
$1 \Longleftrightarrow 0$	30	20	A\&	AS	3\%	2\%

Random Selection

- Same technique would allow us to select N items from list:

```
/** Permute L and return sublist of K>=0 randomly
    * chosen elements of L, using R as random source. */
List select(List L, int k, Random R) {
    for (int i = L.size(); i+k > L.size(); i -= 1)
        swap element i-1 of L with element
            R.nextInt(i) of L;
    return L.sublist(L.size()-k, L.size());
}
```

- Not terribly efficient for selecting random sequence of K distinct integers from [0..N), with $K \ll N$.

Alternative Selection Algorithm (Floyd)

```
/** Random sequence of K distinct integers
    * from 0..N-1, 0<=K<=N. */
List<Integer> select(int N, int K, Random R)
{
    ArrayList<Integer> S = new ArrayList<>();
    for (int i = N-K; i < N; i += 1) {
        // All values in S are < i
        int s = R.randInt(i+1); // 0<= s <= i < N
        if (s == S.get( j) for some j)
            // Insert value i (which can't be there
            // yet) after the s (i.e., at a random
                // place other than the front)
                S.add(j+1, i);
        else
            // Insert random value s (which can't be
            // there yet) at front
            S.add(0, s);
    }
    return S;
}
```

