
CS61B Lecture #36

Today:

• Dynamic Programming

• A Brief Side Trip: Enumeration types.

Last modified: Tue Nov 16 14:52:23 2021 CS61B: Lecture #36 1

Dynamic Programming
• A puzzle (D. Garcia):

– Start with a list with an even number of non-negative integers.

– Each player in turn takes either the leftmost number or the
rightmost.

– Idea is to get the largest possible sum.

• Example: starting with (6, 12, 0, 8), you (as first player) should take
the 8. Whatever the second player takes, you also get the 12, for a
total of 20.

• Assuming your opponent plays perfectly (i.e., to get as much as possible),
how can you maximize your sum?

• Can solve this with exhaustive game-tree search, but. . .

Last modified: Tue Nov 16 14:52:23 2021 CS61B: Lecture #36 2

Obvious Program
• Recursion makes it easy, again:

int bestSum(int[] V) {

int total, i, N = V.length;

for (i = 0, total = 0; i < N; i += 1) total += V[i];

return bestSum(V, 0, N-1, total);

}

/** The largest sum obtainable by the first player in the game on

* the list V[LEFT..RIGHT], given TOTAL = sum of V[LEFT..RIGHT]. */

int bestSum(int[] V, int left, int right, int total) {

if (left > right) {

return 0;

} else {

int L = total - bestSum(V, left+1, right, total-V[left]);

int R = total - bestSum(V, left, right-1, total-V[right]);

return Math.max(L, R);

}

}

• Time cost is C(0) = 1, C(N) = 2C(N − 1); so C(N) ∈ Θ(2N)

Last modified: Tue Nov 16 14:52:23 2021 CS61B: Lecture #36 3

Still Another Idea from CS61A
• The problem is that we are recomputing intermediate results many

times.

• Solution: memoize the intermediate results. Here, we pass in an
N ×N array (N = V.length) of memoized results, initialized to -1.

int bestSum(int[] V, int left, int right, int total, int[][] memo) {

if (left > right) {

return 0;

} else if (memo[left][right] == -1) {

int L = total - bestSum(V, left+1, right, total-V[left], memo);

int R = total - bestSum(V, left, right-1, total-V[right], memo);

memo[left][right] = Math.max(L, R);

}

return memo[left][right];

}

• Now the number of recursive calls to bestSum must be O(N 2), for
N = the length of V , an enormous improvement from Θ(2N)!

Last modified: Tue Nov 16 14:52:23 2021 CS61B: Lecture #36 4

Iterative Version
• I prefer the recursive version, but the usual presentation of this

idea—known as dynamic programming—is iterative:

int bestSum(int[] V) {

int[][] memo = new int[V.length][V.length];

int[][] total = new int[V.length][V.length];

for (int i = 0; i < V.length; i += 1)

memo[i][i] = total[i][i] = V[i];

for (int k = 1; k < V.length; k += 1)

for (int i = 0; i < V.length-k-1; i += 1) {

total[i][i+k] = V[i] + total[i+1][i+k];

int L = total[i][i+k] - memo[i+1][i+k];

int R = total[i][i+k] - memo[i][i+k-1];

memo[i][i+k] = Math.max(L, R);

}

return memo[0][V.length-1];

}

• That is, we figure out ahead of time the order in which the memoized
version will fill in memo, and write an explicit loop, saving the time
needed to check whether result exists.

• But I say, why bother unless it’s necessary to save space?
Last modified: Tue Nov 16 14:52:23 2021 CS61B: Lecture #36 5

Longest Common Subsequence
• Problem: Find length of the longest string that is a subsequence of

each of two other strings.

• Example: Longest common subsequence of
“sally sells sea shells by the seashore” and
“sarah sold salt sellers at the salt mines”

is
“sa sl sa sells the sae” (length 23)

• Similarity testing, for example.

• Obvious recursive algorithm:

/** Length of longest common subsequence of S0[0..k0-1]

* and S1[0..k1-1] (pseudo Java) */

static int lls(String S0, int k0, String S1, int k1) {

if (k0 == 0 || k1 == 0) return 0;

if (S0[k0-1] == S1[k1-1]) return 1 + lls(S0, k0-1, S1, k1-1);

else return Math.max(lls(S0, k0-1, S1, k1), lls(S0, k0, S1, k1-1);

}

• Exponential, but obviously memoizable.

Last modified: Tue Nov 16 14:52:23 2021 CS61B: Lecture #36 6

Memoized Longest Common Subsequence

/** Length of longest common subsequence of S0[0..k0-1] and S1[0..k1-1]. */

static int lls(String S0, int k0, String S1, int k1) {

int[][] memo = new int[k0+1][k1+1];

for (int[] row : memo) Arrays.fill(row, -1);

return lls(S0, k0, S1, k1, memo);

}

private static int lls(String S0, int k0, String S1, int k1, int[][] memo) {

if (k0 == 0 || k1 == 0) return 0;

if (memo[k0][k1] == -1) {

if (S0[k0-1] == S1[k1-1])

memo[k0][k1] = 1 + lls(S0, k0-1, S1, k1-1, memo);

else

memo[k0][k1] = Math.max(lls(S0, k0-1, S1, k1, memo),

lls(S0, k0, S1, k1-1, memo));

}

return memo[k0][k1];

}

Q: How fast will the memoized version be?

Last modified: Tue Nov 16 14:52:23 2021 CS61B: Lecture #36 7

Memoized Longest Common Subsequence

/** Length of longest common subsequence of S0[0..k0-1] and S1[0..k1-1]. */

static int lls(String S0, int k0, String S1, int k1) {

int[][] memo = new int[k0+1][k1+1];

for (int[] row : memo) Arrays.fill(row, -1);

return lls(S0, k0, S1, k1, memo);

}

private static int lls(String S0, int k0, String S1, int k1, int[][] memo) {

if (k0 == 0 || k1 == 0) return 0;

if (memo[k0][k1] == -1) {

if (S0[k0-1] == S1[k1-1])

memo[k0][k1] = 1 + lls(S0, k0-1, S1, k1-1, memo);

else

memo[k0][k1] = Math.max(lls(S0, k0-1, S1, k1, memo),

lls(S0, k0, S1, k1-1, memo));

}

return memo[k0][k1];

}

Q: How fast will the memoized version be? Θ(k0 · k1)

Last modified: Tue Nov 16 14:52:23 2021 CS61B: Lecture #36 8

Side Trip into Java: Enumeration Types
• Problem: Need a type with a few, named, discrete values.

• In the purest form, the only necessary operations are == and !=;
the only property of a value of the type is that it differs from all
others.

• In older versions of Java, used named integer constants:

interface Pieces {

int BLACK PIECE = 0, // Fields in interfaces are static final.

BLACK KING = 1,

WHITE PIECE = 2,

WHITE KING = 3,

EMPTY = 4;

}

• C and C++ provide enumeration types as a shorthand, with syntax like
this:

enum Piece { BLACK PIECE, BLACK KING, WHITE PIECE, WHITE KING, EMPTY };

• But since all these values are basically ints, accidents can happen.

Last modified: Tue Nov 16 14:52:23 2021 CS61B: Lecture #36 9

Enum Types in Java
• More modern versions of Java allow syntax like that of C or C++, but

with more guarantees:

public enum Piece

{ BLACK PIECE, BLACK KING, WHITE PIECE, WHITE KING, EMPTY; }

• Defines Piece as a new reference type, a special kind of class type.

• The names BLACK PIECE, etc., are static, final enumeration constants
(or enumerals) of type PIECE.

• They are automatically initialized, and are the only values of the
enumeration type that exist (cannot say new Piece()).

• Can safely use ==, and also switch statements:

boolean isKing(Piece p) {

switch (p) {

case BLACK KING: case WHITE KING: return true;

default: return false;

}

}

Last modified: Tue Nov 16 14:52:23 2021 CS61B: Lecture #36 10

Making Enumerals Available Elsewhere
• Enumerals like BLACK PIECE are static members of a class, not classes.

• Therefore, unlike C or C++, their declarations are not automatically
visible outside the enumeration class definition.

• So, in other classes, must write Piece.BLACK_PIECE, which can get
annoying.

• However, with version 1.5, Java has static imports: to import all
static definitions of class checkers.Piece (including enumerals), you
write

import static checkers.Piece.*;

among the import clauses.

• Alas, cannot use this for enum classes in the anonymous package.

Last modified: Tue Nov 16 14:52:23 2021 CS61B: Lecture #36 11

Operations on Enum Types
• Order of declaration of enumeration constants significant: .ordinal()

gives the position (numbering from 0) of an enumeration value. Thus,
Piece.BLACK KING.ordinal() is 1.

• The array Piece.values() gives all the possible values of the type.
Thus, you can write:

for (Piece p : Piece.values())

System.out.printf("Piece value #%d is %s%n", p.ordinal(), p);

• The static function Piece.valueOf converts a String into a value of
type Piece. So Piece.valueOf("EMPTY") == EMPTY.

Last modified: Tue Nov 16 14:52:23 2021 CS61B: Lecture #36 12

Fancy Enum Types
• Enums are classes. You can define all the extra fields, methods, and

constructors you want.

• Constructors are used only in creating enumeration constants. The
constructor arguments follow the constant name:

enum Piece {

BLACK PIECE(BLACK, false, "b"), BLACK KING(BLACK, true, "B"),

WHITE PIECE(WHITE, false, "w"), WHITE KING(WHITE, true, "W"),

EMPTY(null, false, " ");

private final Side color;

private final boolean isKing;

private final String textName;

Piece(Side color, boolean isKing, String textName) {

this.color = color; this.isKing = isKing; this.textName = textName;

}

Side color() { return color; }

boolean isKing() { return isKing; }

String textName() { return textName; }

}

Last modified: Tue Nov 16 14:52:23 2021 CS61B: Lecture #36 13

	CS61B Lecture #36
	Dynamic Programming
	Obvious Program
	Still Another Idea from CS61A
	Iterative Version
	Longest Common Subsequence
	Memoized Longest Common Subsequence
	Side Trip into Java: Enumeration Types
	Enum Types in Java
	Making Enumerals Available Elsewhere
	Operations on Enum Types
	Fancy Enum Types

