Lecture #39: Compression

Credits: This presentation is largely taken from CS61B lectures by Josh Hug.

Compression and Git

- Git creates a new object in the repository each time a changed file or directory is committed.
- Things can get crowded as a result.
- To save space, it compresses each object.
- Every now and then (such as when sending or receiving from another repository), it packs objects together into a single file: a "packfile."
- Besides just sticking the files together, uses a technique called delta compression.

Delta Compression

- Typically, there will be many versions of a file in a Git repository: the latest, and previous edits of it, each in different commits.
- Git doesn't keep track explicitly of which file came from where, since that's hard in general:
 - What if a file is split into two, or two are spliced together?
- But, can guess that files with same name and (roughly) same size in two commits are probably versions of the same file.
- When that happens, store one of them as a pointer to the other, plus a list of changes.

Delta Compression (II)

So, store two versions

situation.

make him an oration. I shall tell him make him an oration. senses,

V2

My eyes are fully open to my awful My eyes are fully open to my awful situation.

I shall go at once to Roderick and I shall go at once to Roderick and

I've recovered my forgotten moral I shall tell him I've recovered my forgotten moral senses, and don't give twopence halfpenney for any consequences.

as

V1

[Fetch 1st 6 lines from V2] My eyes are fully open to my awful situation

> I shall go at once to Roderick and make him an oration.

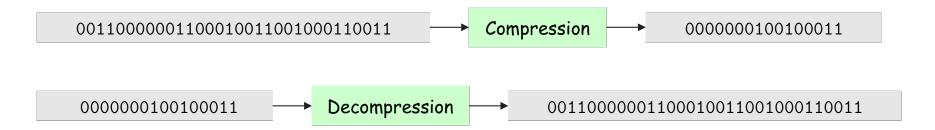
> I shall tell him I've recovered my forgotten moral senses, and don't give twopence halfpenney for any consequences.

Two Unix Compression Programs

```
$ gzip -k lect37.pic.in # The GNU version of ZIP
$ bzip2 -k lect37.pic.in # Another compression program
$ ls -1 lect37.pic*
#
                         Size
#
                        (bytes)
-rw-r--r-- 1 cs61b cs61b 31065 Apr 27 23:36 lect37.pic.in
-rw-r--r-- 1 cs61b cs61b 10026 Apr 27 23:36 lect37.pic.in.bz2 # Roughly 1/3 size
-rw-r--r-- 1 cs61b cs61b 10270 Apr 27 23:36 lect37.pic.in.gz
$ gzip -k lect37.pdf
$ ls -1 lect37.pdf*
-rw-r--r-- 1 cs61b cs61b 124665 Mar 30 13:46 lect37.pdf
-rw-r--r-- 1 cs61b cs61b 101125 Mar 30 13:46 lect37.pdf.gz # Roughly 81% size
$ gunzip < lect37.pic.in.gz > lect37.pic.in.ungzip # Uncompress
$ diff lect37.pic.in lect37.pic.in.ungzip
$
                # No difference from original (lossless)
$ gzip < lect37.pic.in.gz > lect37.pic.in.gz.gz
$ ls -l lect37.pic*gz
-rw-r--r-- 1 cs61b cs61b 10270 Apr 27 23:36 lect37.pic.in.gz
-rw-r--r-- 1 cs61b cs61b 10293 Apr 28 00:16 lect37.pic.in.gz.gz
```

Compression and Decompression

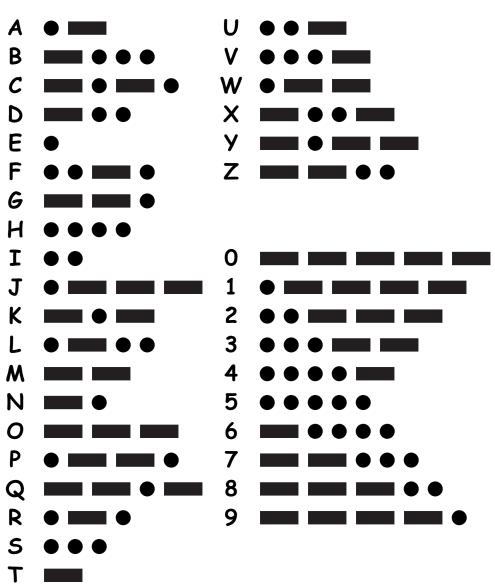
- A compression algorithm converts a stream of symbols into another, smaller stream.
- It is called *lossless* if the algorithm is *invertible* (no information lost).
- A common symbol is the bit:



- Here, we simply replaced the 8-bit ASCII bit sequences for digits (where, for example, the single character 'O' is encoded as 0x30=0b00110000) with 4-bit (binary-coded decimal).
- Call these 4-bit sequences codewords, which we associate with the symbols in the original, uncompressed text.
- Can do better than 50% compression with English text.

Example: Morse Code

- Compact, simple to transmit.
- Actually use three symbols: dih, dah, and pause. Pauses go between codewords.



Prefix Free Codes

- Morse code needs pauses between codewords to prevent ambiguities.
- Otherwise,

could be DEATH, BABE, or BATH.

- The problem is that Morse code allows many codewords to be prefixes of other ones, so that it's difficult to know when you have come to the end of one.
- Alternative is to devise prefix-free codes, in which no codeword is a prefix of another.
- Then one always knows when a codeword ends.

Prefix-Free Examples

Encoding A

space	1
Е	01
Т	001
Α	0001
0	00001
I	000001

Encoding B

space	111
Е	010
Т	1000
Α	1010
0	1011
I	1100

- For example, "I ATE" is unambiguously
 - 0000011000100101 in Encoding A, or 110011110101000010 in Encoding B.
- What data structures might you use to... Encode? Decode?

Prefix-Free Examples

Encoding A

space	1
Е	01
Т	001
Α	0001
0	00001
I	000001

Encoding B

space	111
Е	010
Т	1000
Α	1010
0	1011
I	1100
• • •	

• For example, "I ATE" is unambiguously

0000011000100101 in Encoding A, or 110011110101000010 in Encoding B.

What data structures might you use to...
 Encode? Ans: HashMap or array Decode?

Prefix-Free Examples

Encoding A

space	1
Е	01
Т	001
Α	0001
0	00001
I	000001

Encoding B

space	111
E	010
Т	1000
Α	1010
0	1011
I	1100
• • •	

• For example, "I ATE" is unambiguously

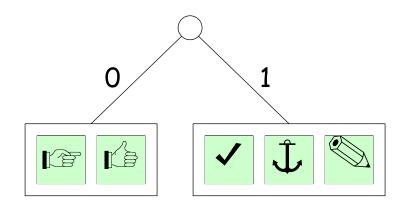
0000011000100101 in Encoding A, or 110011110101000010 in Encoding B.

What data structures might you use to...
 Encode? Ans: HashMap or array Decode? Ans: Trie

Symbol	Frequency	Encoding
	0.35	
	0.17	
✓	0.17	
Ĵ	0.16	
	0.15	

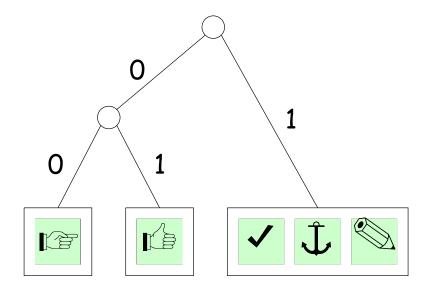
- Count frequencies of all characters in text to be compressed.
- Break grouped characters into two groups of roughly equal frequency.
- Encode left group with leading 0, right group with leading 1.
- Repeat until all groups are of size 1.

Symbol	Frequency	Encoding
	0.35	0
	0.17	0
✓	0.17	1
Ĵ	0.16	1
	0.15	1



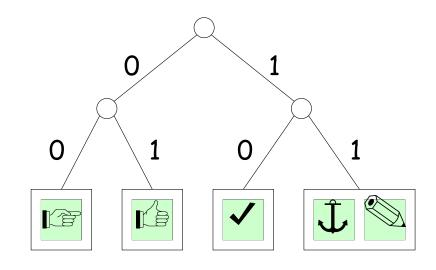
- Count frequencies of all characters in text to be compressed.
- Break grouped characters into two groups of roughly equal frequency.
- Encode left group with leading 0, right group with leading 1.
- Repeat until all groups are of size 1.

Symbol	Frequency	Encoding
	0.35	00
	0.17	01
✓	0.17	1
Ĵ	0.16	1
	0.15	1



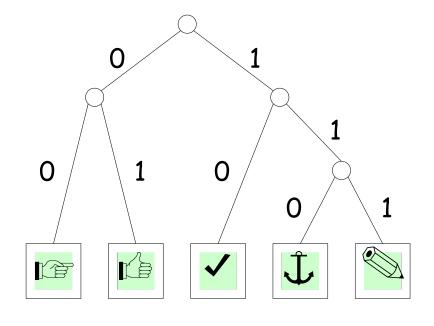
- Count frequencies of all characters in text to be compressed.
- Break grouped characters into two groups of roughly equal frequency.
- Encode left group with leading 0, right group with leading 1.
- Repeat until all groups are of size 1.

Symbol	Frequency	Encoding
	0.35	00
	0.17	01
✓	0.17	10
Ĵ	0.16	11
	0.15	11



- Count frequencies of all characters in text to be compressed.
- Break grouped characters into two groups of roughly equal frequency.
- Encode left group with leading 0, right group with leading 1.
- Repeat until all groups are of size 1.

Symbol	Frequency	Encoding
	0.35	00
	0.17	01
✓	0.17	10
Ĵ	0.16	110
	0.15	111

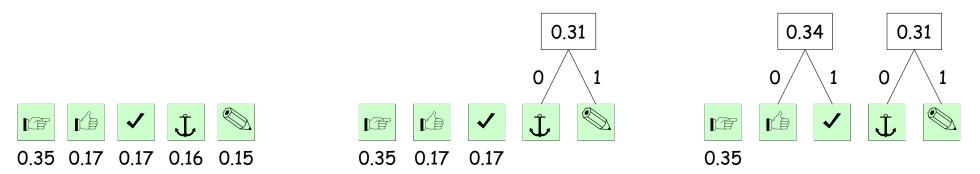


- Count frequencies of all characters in text to be compressed.
- Break grouped characters into two groups of roughly equal frequency.
- Encode left group with leading 0, right group with leading 1.
- Repeat until all groups are of size 1.

Can We Do Better?

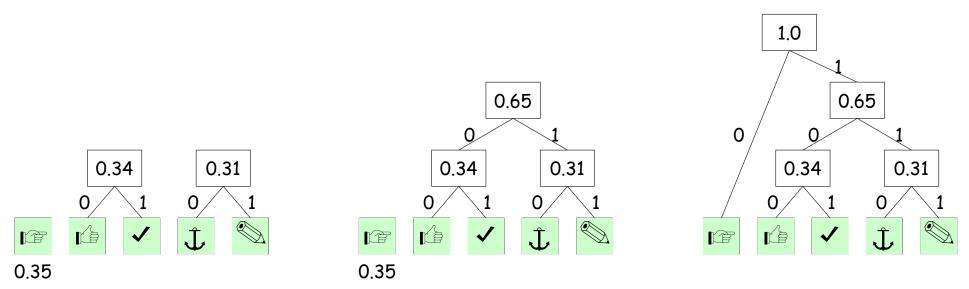
- We'll say an encoding of symbols to codewords that are bitstrings is optimal for a particular text if it encodes the text in the fewest bits.
- Shannon-Fano coding is good, but not optimal.
- The optimal solution was found by an MIT graduate student, David Huffman, in a class taught by Fano. The students were given the choice of taking the final or solving this problem (i.e., finding the encoding and a proof of optimality).
- The result is called Huffman coding.
- That's right: Fano assigned a problem he hadn't been able to solve. Professors do that occasionally.
- See also this article.

Huffman Coding



- Put each symbol in a node labeled with the symbol's relative frequency (as before).
- Repeat the following until there is just one node:
 - Combine the two nodes with smallest frequencies as children of a new single node whose frequency is the sum of those of the two nodes being combined.
 - Let the edge to the left child be labeled '0' and to the right be labeled '1'.
- The resulting tree shows the encoding for each symbol: concatenate the edge labels on the path from the root to the symbol.

Huffman Coding



- Put each symbol in a node labeled with the symbol's relative frequency (as before).
- Repeat the following until there is just one node:
 - Combine the two nodes with smallest frequencies as children of a new single node whose frequency is the sum of those of the two nodes being combined.
 - Let the edge to the left child be labeled 'O' and to the right be labeled '1'.
- The resulting tree shows the encoding for each symbol: concatenate the edge labels on the path from the root to the symbol.

Comparison

Symbol	Frequency	Shannon-Fano	Huffman
	0.35	00	0
	0.17	01	100
✓	0.17	10	101
Ĵ	0.16	110	110
	0.15	111	111

For this case, Shannon-Fano coding takes a weighted average of 2.31 bits per symbol, while Huffman coding takes 2.3.

LZW Coding

- So far, we have used systems with one codeword per symbol.
- To get better compression, must encoded multiple symbols per codeword.
- This will allow us to code strings such as

abcdabcdeabcdefabcdefgabcdefghabcdefghiabcd

in space that can be than less than 43 imes weighted average symbol length.

- In LZW coding, we create new codewords as we go along, each corresponding to substrings of the text:
 - Start with a trivial mapping of codewords to single symbols.
 - After outputting a codeword that matches the longest possible prefix, X, of the remaining input, add a new codeword Y that maps to the substring X followed by the next input symbol.

Example of LZW encoding

- Start with a trivial mapping of codewords to single symbols.
- After outputting a codeword that matches the longest possible prefix,
 X, of the remaining input, add a new codeword Y that maps to the substring X followed by the next input symbol.

Consider the following text as an example:

B="aababcabcdabcdeabcdefabcdefgabcdefgh"

We'll compute C(B), the encoding of B. Our codewords will consist of 8-bit ASCII codes (0x00-0x7f).

LZW Step 0: Initial state

B = aababcabcdabcdeabcdefabcdefgabcdefgh

Code	String
0x61	a
0x62	Ъ
0x63	С
• • •	• • •
0x7e	~
0x7f	

$$C(B) =$$

- B = aababcabcdabcdeabcdefabcdefgabcdefgh
 - Best prefix match in the table is 'a', so output 0x61,
 - And add aa to the table with a new code.

Code	String
0x61	a
0x62	Ъ
0x63	С
0x7e	~
0x7f	
0x80	aa

$$C(B) = 0x61$$

- B = aababcabcdabcdeabcdefabcdefgabcdefgh
 - Best prefix match in the table for remaining input is still 'a', so output 0x61,
 - And add ab to the table with a new code.

Code	String
0x61	a
0x62	Ъ
0x63	С
• • •	• • •
0x7e	2
0x7f	
0x80	aa
0x81	ab

$$C(B) = 0 \times 6161$$

B = aa b abcabcdabcdeabcdefabcdefgabcdefgh

- Best prefix match in the table for remaining input is 'b', so output 0x62,
- And add ba to the table with a new code.

Code	String
0x61	a
0x62	Ъ
0x63	С
	• • •
0x7e	~
0x7f	
0x80	aa
0x81	ab
0x82	ba

C(B) = 0x616162

B = aab ab cabcdabcdeabcdefabcdefgabcdefgh

- Best prefix match in the table for remaining input is now 'ab', so output 0x81 (half as many bits as 'ab').
- And add abc to the table with a new code.

String
a
Ъ
С
~

aa
ab
ba
abc

 $C(B) = 0 \times 61616281$

- B = aababcabcdeabcdefabcdefgabcdefgh
 - Best prefix match in the table for remaining input is now 'c', so output 0x63
 - And add ca to the table with a new code.

Code	String
0x61	a
0x62	Ъ
0x63	С
0x7e	~
0x7f	
0x80	aa
0x81	ab
0x82	ba
0x83	abc
0x84	ca

 $C(B) = 0 \times 6161628163$

B = aababcabcdabcdeabcdefabcdefgabcdefgh

- Best prefix match in the table for remaining input is now ???, so output ???
- And add ??? to the table with a new code.

Code	String
0x61	a
0x62	Ъ
0x63	С
• • •	• • •
0x7e	~
0x7f	
0x80	aa
0x81	ab
0x82	ba
0x83	abc
0x84	ca
0x85	???

 $C(B) = 0 \times 6161628163??$

B = aababc abc dabcdeabcdefabcdefgabcdefgh

- Best prefix match in the table for remaining input is now 'abc', so output 0x83
- And add abcd to the table with a new code.

Code	String
0x61	a
0x62	Ъ
0x63	С
0x7e	~
0x7f	
0x80	aa
0x81	ab
0x82	ba
0x83	abc
0x84	ca
0x85	abcd

 $C(B) = 0 \times 616162816383$

B = aababcabc dabcdeabcdefabcdefgabcdefgh

- Best prefix match in the table for remaining input is now 'd', so output 0x64
- And add 'da' to the table with a new code.

Code	String
0x61	a
0x62	Ъ
0x63	С
	• • •
0x7e	~
0x7f	
0x80	aa
0x81	ab
0x82	ba
0x83	abc
0x84	ca
0x85	abcd
0x86	da

 $C(B) = 0 \times 61616281638364$

B = aababcabc dabcdeabcdefabcdefgabcdefgh

- Best prefix match in the table for remaining input is now 'd', so output 0x64
- And add 'da' to the table with a new code.

Code	String
0x61	a
0x62	Ъ
0x63	С
• • •	• • •
0x7e	~
0x7f	
0x80	aa
0x81	ab
0x82	ba
0x83	abc
0x84	ca
0x85	abcd
0x86	da

$$C(B) = 0 \times 61616281638364$$

- What's next?
- What is the complete encoding? (When reviewing, try to figure it out before looking at the next slide.)

LZW Final State

B = aababcabcdabcdeabcdefabcdefgabcdefgh (200 bits)

Code	String
0x61	a
0x62	Ъ
0x63	С
0x7e	~
0x7f	
0x80	aa
0x81	ab
0x82	ba
0x83	abc
0x84	ca
0x85	abcd
0x86	da

Code	String
0x87	abcde
0x88	ea
0x89	abcdef
0x8a	fa
0x8b	abcdefg
0x8c	ga
0x8d	abcdefgh

$$C(B) = 0x616162816383648565$$
 876689678b68 (120 bits)

To think about: How might you represent this table to allow easily finding the longest prefix at each step?

Decompression

- Because each different input creates a different table, it would seem that we need to provide the generated table in order to decode a message.
- Interestingly, though, we don't!
- Suppose that, starting with the same initial table we did before, with codes 0x00-0x7f already assigned, we're given

$$C(B) = 0 \times 616162816383$$

and wish to find B.

We can see it starts with aab. What's next?

Code	String
0x61	a
0x62	Ъ
0x63	С
• • •	• • •
0x7e	~
0x7f	

Reconstructing the Coding Table (I)

- Idea is to reconstruct the table as we process each codeword in C(B).
- ullet Let S(X) mean "the symbols encoded by codeword X," and let Y_k mean character k of string Y.
- ullet For each codeword, X, in C(B), add S(X) to our result.
- ullet Whenever we decoded two consecutive codewords, X_1 and X_2 , add a new codeword that maps to $S(X_1) + S(X_2)_0$
- Thus, we recapitulate a step in the compression operation that created C(B) in the first place.
- Since we go from left to right, the table will (almost) always already contain the mapping we need for the next codeword.

LZW Decompression, Step 1

C(B) = 0x61616281638364

- S(0x61) is 'a' in the table, so add it to B.
- Don't have a previous codeword yet, so don't add anything to the table.

Code	String
0x61	a
0x62	Ъ
0x63	С
• • •	
0x7e	~
0x7f	

$$B = a$$

$$C(B) = 0x61616281638364$$

- S(0x61) is 'a' in the table, so add it to B.
- We have two codewords—S(0x61)='a' twice—so add 'aa' to the table as a new codeword

Code	String
0x61	a
0x62	Ъ
0x63	С
0x7e	~
0x7f	
0x80	aa

$$B = aa$$

$$C(B) = 0x61616281638364$$

- S(0x62) is 'b' in the table, so add it to B.
- We have two codewords—S(0x61)='a' and S(0x62)='b'—so add 'ab' to the table as a new codeword.

Code	String
0x61	a
0x62	Ъ
0x63	С
• • •	• • •
0x7e	2
0x7f	
0x80	aa
0x81	ab

B = aab

$$C(B) = 0x61616281638364$$

- S(0x81) is 'ab' in the table, so add it to B.
- We have two codewords—S(0x62)='b' and S(0x81)='ab'—so add 'ba' to the table as a new codeword.

Code	String
0x61	a
0x62	Ъ
0x63	С
• • •	
0x7e	2
0x7f	
0x80	aa
0x81	ab
0x82	ba

B = aabab

$$C(B) = 0x61616281638364$$

- S(0x63) is 'c' in the table, so add it to B.
- We have two codewords—S(0x81)='ab' and S(0x63)='c'—so add 'abc' to the table as a new codeword.

Code	String
0x61	a
0x62	Ъ
0x63	С
• • •	• • •
0x7e	2
0x7f	
0x80	aa
0x81	ab
0x82	ba
0x83	abc

B = aababc

$$C(B) = 0x61616281638364$$

- S(0x83) is ??? in the table, so add it to B.
- We have two codewords—S(???)=??? and S(???)=???—so add ??? to the table as a new codeword.

Code	String
0x61	a
0x62	Ъ
0x63	С
• • •	• • •
0x7e	~
0x7f	
0x80	aa
0x81	ab
0x82	ba
0x83	abc
???	???

B = aababc???

$$C(B) = 0x61616281638364$$

- S(0x83) is 'abc' in the table, so add it to B.
- We have two codewords—S(0x63)='c' and S(0x83)='abc'—so add 'ca' to the table as a new codeword.

	T
Code	String
0x61	a
0x62	Ъ
0x63	С
	• • •
0x7e	~
0x7f	
0x80	aa
0x81	ab
0x82	ba
0x83	abc
0x84	ca

B = aababcabc

$$C(B) = 0x61616281638364$$

- S(0x64) is 'd' in the table, so add it to B.
- We have two codewords—S(0x83)='abc' and S(0x64)='d'—so add 'abcd' to the table as a new codeword.

Code	String
0x61	a
0x62	Ъ
0x63	С
0x7e	~
0x7f	
0x80	aa
0x81	ab
0x82	ba
0x83	abc
0x84	ca
0x85	abcd

B = aababcabcd

Reconstructing the Coding Table (II)

- In a previous slide, I said "... the table will (almost) always already contain the mapping we need..."
- Unfortunately, there are cases where it doesn't.
- Consider the string B='cdcdcdc' as an example.
- After we encode it, we end up with

Code	String
0x61	a
0x62	Ъ
0x63	С
• • •	• • •
0x7e	2
0x7f	
0x80	cd
0x81	dc
0x82	cdc

$$C(B) = 0x63648082$$

• But decoding causes trouble...

$$C(B) = 0x63648082$$

- S(0x63) is 'c' in the table, so add it to B.
- Don't have a previous codeword yet, so don't add anything to the table.

Code	String
0x61	a
0x62	Ъ
0x63	С
	• • •
0x7e	~
0x7f	

$$B = c$$

$$C(B) = 0x63648082$$

- S(0x64) is 'd' in the table, so add it to B.
- We have two codewords—S(0x63)='c' and S(0x64)='d'—so add 'cd' to the table as a new codeword

Code	String
0x61	a
0x62	Ъ
0x63	С
0x7e	~
0x7f	
0x80	cd

$$B = cd$$

$$C(B) = 0x63648082$$

- S(0x80) is 'cd' in the table, so add it to B.
- We have two codewords—S(0x64)='d' and S(0x80)='cd'—so add 'dc' to the table as a new codeword

Code	String
0x61	a
0x62	Ъ
0x63	С
• • •	• • •
0x7e	~
0x7f	
0x80	cd
0x81	dc

B = cdcd

$$C(B) = 0x63648082$$

• Oops! S(0x82) is not yet in the table. What now?

Code	String
0x61	a
0x62	Ъ
0x63	С
• • •	• • •
0x7e	2
0x7f	
0x80	cd
0x81	dc
0x82	???

B = cdcd???

- Problem is that we could look ahead while coding, but can only look behind when decoding.
- So must figure out what 0x82 is going to be by looking back.

Tricky Decompression, Step 4 (Second Try)

$$C(B) = 0x63648082$$

- S(0x82)=Z (to be figured out).
- Previously decoded S(0x80)="cd" and now have S(0x82)=Z, so will add "cd Z_0 " to the table as S(0x82).
- So Z starts with S(0x80) and therefore Z_0 must be 'c'!
- Thus $S(0x82) = S(0x80)+Z_0 = 'cdc'$.

Code	String
0x61	a
0x62	Ъ
0x63	С
• • •	• • •
0x7e	~
0x7f	
0x80	cd
0x81	dc
0x82	cdc

B = cdcdcdc

LZW Algorithm

- LZW is named for its inventors: Lempel, Ziv, and Welch.
- Was widely used at one time, but because of patent issues became rather unpopular (especially among open-source folks).
- The patents expired in 2003 and 2004.
- Now found in the .gif files, some PDF files, the BSD Unix compress utility and elsewhere.
- There are numerous other (and better) algorithms (such as those in gzip and bzip2).
- The presentation here is considerably simplified.
 - We used fixed-length (8-bit) codewords, but the full algorithm produces variable-length codewords using (!) Huffman coding (compressing the compression).
 - The full algorithm clears the table from time to time to get rid of little-used codewords.

Some Thoughts

- Compressing a compressed text doesn't result in much compression.
- Why must it be impossible to keep compressing a text?
- A program that takes no input and produces an output can be thought of as an encodings of that output.
- Leading to the following question: Given a bitstream, what is the length of the shortest program that can produce it?
- For any specific bitstream, there is a specific answer!
- This is a deep concept, known as Kolmogorov Complexity.

Some Thoughts

- Compressing a compressed text doesn't result in much compression.
- Why must it be impossible to keep compressing a text?
- Otherwise you'd be able to compress any number of different messages to 1 bit!
- A program that takes no input and produces an output can be thought of as an encodings of that output.
- Leading to the following question: Given a bitstream, what is the length of the shortest program that can produce it?
- For any specific bitstream, there is a specific answer!
- This is a deep concept, known as Kolmogorov Complexity.

More Thoughts

- It's actually weird that one can compress much at all.
- Consider a 1000-character ASCII text (8000 bits), and suppose we manage to compress it by 50%.
- ullet There are 2^{8000} distinct messages in 8000 bits, but only 2^{4000} possible messages in 4000 bits.
- ullet That is, no matter what one's scheme, one can encode only 2^{-4000} of the possible 8000-bit messsages by 50%! Yet we do it all the time.
- Reason: Our texts have a great deal of redundancy (aka low information entropy).
- Texts with high entropy—such as random bits, previously compressed texts, or encrypted texts—are nearly incompressible.

Git

- Git Actually uses a different scheme from LZW for compression: a combination of LZ77 and Huffman coding.
- LZ77 is kind of like delta compression, but within the same text.
- Convert a text such as

One Mississippi, two Mississippi

into something like

One Mississippi, two <11,7>

where the <11,7> is intended to mean "the next 11 characters come from the text that ends 7 characters before this point."

- We add new symbols to the alphabet to represent these (length, distance) inclusions.
- When done, Huffman encode the result.

Lossy Compression

- For some applications, like compressing video and audio streams, it really isn't necessary to be able to reproduce the exact stream.
- We can therefore get more compression by throwing away some information
- Reason: there is a limit to what human senses respond to.
- For example, we don't hear high frequencies, or see tiny color variations.
- Therefore, formats like JPEG, MP3, or MP4 use lossy compression and reconstruct output that is (hopefully) imperceptibly different from the original at large savings in size and bandwidth.
- You can see more of this in EE120 and other courses.

Wrapping Up

- Lossless compression saves space (and bandwidth) by exploiting redundancy in data
- Huffman and Shannon-Fano coding represent individual symbols of the input with shorter codewords.
- LZW and similar codes represents multiple symbols with shorter codewords.
- Both adapt their codewords to the text being compressed.
- Lossy compression both uses redundancy and exploits the fact that certain consumers of compressed data (like humans) can't really use all the information that could be encoded.