
Your Name (first last)

←​ SID & Test # To The Left (or aisle)

UC Berkeley CS61C
Spring 2020 Midterm 1

Solutions

TA name

SID

SID & Test # To The Right (or aisle) ​→

Make sure to bubble in your answers all the way​…like this:
⬤​ (select ONE), and ​⬛​(select ALL that apply)​.

The following are examples of bubbles that ​won’t​ be considered bubbled.

I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that any academic misconduct
will be reported to the Center for Student Conduct, and may result in partial or complete loss of credit and
penalties that can include an F in the class. I am also aware that Nick Weaver takes cheating personally. I also
promise to either give away my first-born child to the kelpies that live in Strawberry Creek or write [sic] after my
signature to show that I actually do read the fine print...

Sign your [sic] name: __

MT 1 Page 1 of 14 CS61C - SP 20

Midterm 1 Clarifications

● 5b) or POSITIVE if the first element
is bigger. Also, the numbers
themselves are all positive, <2^25,
and separated by at least 2.

Q1) ​String Cheese​ ​(8 pts = 2 * 1 + 3 + 3)

Mark the correct lines that will allow the program to execute as specified below: There may be multiple correct
answers.

a) Correctly gets the number of bytes in a string, including the null-terminator (Mark all that apply)

int get_strlen(char* str) {

⬜​ return strlen(str);
⬛​ return strlen(str) + 1;
⬜​ return sizeof(str);
⬜​ return sizeof(str) + 1;
⬜​ return str.strlen() + 1;
⬜​ None of the above

}

Because strlen only returns the length of the string without the null-terminator, we must add 1
b) Gets the ith element of an array

int get_elem(int* arr) {

⬛​ return arr[i];
⬜​ return arr + i;
⬛​ return *(arr + i);
⬜​ return arr.get(i);
⬜​ return *arr + i;
⬜​ None of the above

}
Either use index notation or move the pointer and dereference
The following code is executed on a 32-bit little-endian system.

#include <stdio.h>

int main() {

 int doThis = 0x6C697665;

 char *dont = (char *)(&doThis);

 printf(“A: ”);

 for (int i = 0; i < 4; i++) {

 printf(“%c”, dont[i]);

 }

 printf(“\n”);

}

c) What is printed when this program is run? If it crashes/segfaults, write ​n/a​.

A: ​evil

Doesn’t segfault b/c C treats data as bits to be interpreted with regards to

their type and trusts that the programmer’s type casts are correct.

Little-endian means least significant byte (0x65) is at the lowest memory

address, so the answer is evil instead of live.

MT 1 Page 2 of 14 CS61C - SP 20

Carefully read the following code.

0 #include <stdio.h>

1 #include <string.h>

2 int main() {

3 char *boo = “go cardinals!”;

4 char *cheer = “go bears!!!!”;

5 printf(“%s”, cheer);

6 for (int i = 0; i < strlen(cheer); i++) {

7 boo[i] = cheer[i];

8 }

9 printf(“%s”, boo);

10 }

d) Does the program crash? If the program does not crash, write exactly what is printed to stdout. If the
program crashes, identify both the line # that crashes and the line # you would fix to solve the crash

⬤

Yes

Line # where the crash occurs

◯​ 0 ​◯​ 4 ​◯​ 8
◯​ 1 ​◯​ 5 ​◯​ 9
◯​ 2 ​◯​ 6 ​◯​ 10
◯​ 3 ​⬤​ 7

Line # you would change to solve the
crash.
◯​ 0 ​◯​ 4 ​◯​ 8
◯​ 1 ​◯​ 5 ​◯​ 9
◯​ 2 ​◯​ 6 ​◯​ 10
⬤​ 3 ​◯​ 7

◯

No

Crashes because string literals (“abcd”) are READ ONLY and cannot be modified. Changing

line 3 to be char boo[] = “go cardinals!”; would fix it as the string literal would then

be used to initialize a char array on the stack which is modifiable.

MT 1 Page 3 of 14 CS61C - SP 20

Q2) ​Number RIP​ ​(8 pts = 8 * 1)

Please fill out the following table. Write ​N/A​ if the conversion is not possible. Some entries have already been
filled out for you. You may assume all binary numbers are 8 bits.

Decimal Binary (Two’s
complement)

Octal (base 8,
two’s complement)

Hex (two’s
complement)

Binary (Biased w/
added bias of -127)

-29 0b11100011 343 0xE3 0b01100010

89 0b01011001 131 0x59 0b11011000

Decimal Binary (Two’s
complement)

Octal (base 8, two’s
complement)

Hex (two’s
complement)

Binary (Biased w/
added bias of -127)

-29 We first find the
binary representation

of 29, which is
0b00011101. We

then flip all the bits
and add 1, and that

gives us 0b11100011

Notice that 8 = 2​3​.
Thus, we can group 3
binary digits at a time
and represent them as
one octal digit. Since 8
is not a multiple of 3,
we can add a zero at
the beginning of our

binary number as this
will not change the

value. Now 0b 011 100
011 = 343​8​.

We group the
binary digits in
groups of 4.

0b 1110 0011 =
0xE3

To go from a
decimal value to its
biased notation, we

first subtract the
bias from -29, and
then represent the
resulting number

-29 - (-127) = 98 in
its binary

representation
0b01100010.

1 * 8​0​ + 3 *8​1
+ 1 * 8​2​ = 89

We will take each
octal digit and

replace it with 3
binary digits, this

gives us 131​8​ = 0b
001 011 001. Then
we take the least

significant 8 bits and
get 0b01011001

131 We group the
binary digits in
groups of 4.

0b 0101 1001 =
0x59

We first subtract
the bias -127 from

89 and get 216.
216 represented as
an unsigned binary

number is
0b11011000

MT 1 Page 4 of 14 CS61C - SP 20

Q3) ​Unions​ ​(8 pts = 4 * 2)

#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

union Fun {

uint8_t u[4];

int8_t i[4];

char s[4];

int t;

};

int main() {

union Fun *fun =

 calloc(1, sizeof(union

Fun));

fun->i[0] = -1;

//Question a
printf("%u\n", fun->u[0]);

fun->u[0] *= 2;

//Question b
printf("%d\n", fun->i[0]);

fun->t *= -1;

fun->t >>= 1;

//Question c
printf("%d\n", fun->i[1]);

fun->s[0] = '\0';

//Question d
printf("%d\n", fun->t);

free(fun);

return 0;

}

Write what each print statement will print out in the corresponding box.
Assume that this system is little-endian and that right shifts on signed
integers are arithmetic.

a)

255

Because we are asking for the unsigned representation of the first
byte in the union, we will get the value 255 instead of -1.
b)

-2

Multiplying u[0] by -2 multiplies i[0] by -2 as well (since they share the
same bytes). Thus, the value printed is -2.
c)

-1

We negate all the bytes in the union and right shift it by one. This
gives us 0xffffff81. Because of little-endianness, we want the second
to last element– which is 0xff. This is equivalent to -1 in 8-bit signed
decimal.
d)

-256

We set the firstmost byte in the union to “0”. As the remaining bytes
are all 1 still, this means that the remaining number is 0xffffff00.
Converting this number to its positive equivalent in 32-bit two’s
complement will net us 0x100, which is equivalent to 256. Thus, this
will print out -256.

MT 1 Page 5 of 14 CS61C - SP 20

Q4) ​CS61TREE Memory!​ ​(8 pts = 7 * 0.5 + 3 + 1.5)
For this problem, assume all pointers and integers are ​four bytes​ and all characters are ​one byte​.
Consider the following C code (all the necessary ​#include​ directives are omitted). C structs are properly
aligned in memory and all calls to malloc succeed. For all of these questions, assume we are analyzing them
right before main returns.

typedef struct node {

 void *data;

 struct node *left;

 struct node *right;

} node;

node* newNode(void *data) {

 node *n = (node *) malloc(sizeof(node));

 n->data = data;

 n->left = NULL; n->right = NULL;

 return n; }

int main() {

 char *r = “CS 61C Rocks!”;

 char s[] = “CS 61C Sucks!”; /* Reddit review... Warning: Nick sh*tposts too! */

 node nl;

 nl.data = (void *) r;

 node *root = newNode((void *) &main);

 root->left = malloc(strlen(r) + 1);

 root->right = newNode((void *) s);

 root->right->left = newNode((void *) r);

 root->right->right = newNode((void *) &printf);

 root->left = &nl;

}

a) Each of the following evaluate to an address in memory. In other
words, they "point" somewhere. Where in memory do they ​point​?

b) How many bytes of memory are
allocated but not ​free()​d by this
program, if any?

62 ​Bytes

We malloc a total of 4 nodes. Each
node is 12 bytes in size since we
have 3 pointers and all pointers are 4
bytes.
We also malloced some data to
root->left of size strlen(r) + 1 = 13 + 1
= 14.
Since we do not free any of those
pointers, we will leak 4 * 12 + 14
bytes of data = 48 + 14 = 62 Bytes.

 Code Static Stack Heap

root
The ​root​ node is malloced in
newNode​ so it will be stored in the
heap.

◯ ◯ ◯ ⬤

root->data
We passed in a pointer to the
main function which is stored in
the code.

⬤ ◯ ◯ ◯

root->left
At the end of main, we set the
root->left​ node to the address
of ​nl​ which was created on the
stack.

◯ ◯ ⬤ ◯

root->left->data
We set the data in the nl data
structure to be r. Since ​r​ was
declared a ​char *​, it is a pointer
to a static string thus it will be in

◯ ⬤ ◯ ◯

MT 1 Page 6 of 14 CS61C - SP 20

static memory.

root->right->data
root->right​ was created with
setting the data to s. If you look at
the way s was declared (​char
[]​), this means it was placed on
the stack. Thus it is pointing to the
stack.

◯ ◯ ⬤ ◯

root->right->left->data
This node has the same reasoning
as ​root->left->data

◯ ⬤ ◯ ◯

&newNode
newNode​ is located in the code
since it is a function which will
execute.

⬤ ◯ ◯ ◯

void free_tree(node *n) {
 if (n == NULL) return;
 free_tree(n->left);
 free_tree(n->right);
 free(n);
}

c) Given this free function, if we called ​free_tree(root) after all
the code in main is executed​, this program would have well defined
behavior.

◯ True
⬤​ False
This ​free_tree​ function would operate correctly SO LONG as every node
was allocated correctly (with ​malloc​ or​ calloc​). Since we see that we
allocated ​root->left​ on the heap, if we called ​free_tree(root)​, we will
end up freeing an address on the stack which is undefined behavior!

MT 1 Page 7 of 14 CS61C - SP 20

Q5) ​The Bananananananana Hunt​ ​(15 pts = 4 + 4 + 7)
You’re on a hunt around campus to find the best fresh banana available. You find a note from the CS61C
course staff with clues, but they’re encrypted so that only the best students can find the bananas. ​Note that the
solutions for each part are not dependent on the other parts.

(a) Your first clue is a string encoded in an integer array ​info​ of length ​len​. We encoded the
null-terminated string by placing the ​i​th character in the most significant byte of ​i​th integer in ​info​.
Modify the code below so that the original string is properly printed and so that there are ​no memory
leaks or undefined behavior​.
For this question, ​len​ is the size of all the characters needed for a properly formatted string (all the
letters and the null terminator). The first step is to allocate the memory for this buffer on the heap, using
malloc​ or ​calloc​. Next, since the information is encoded in the most significant bit, a right shift will
move the character into the least significant bit so that a cast to ​char​ type will keep the data. Since
int​s are 4 bytes, the left shift must be by three bytes (24 bits). Finally, the buffer created to print the
information must be freed to avoid a memory leak.
void clue1(unsigned int* info, int len) {

 char* info_to_print = ​malloc ​(​len *​ sizeof(char));

 for (int i = 0; i < len; i++) {

 info_to_print[i] = (char) ​info[i]>>24 /* Others possible as well */​;

 }

 printf(“%s\n”, info_to_print);

 ​free(info_to_print);

}

MT 1 Page 8 of 14 CS61C - SP 20

(b) Having discovered the identity, you follow it and find a large array of double precision floating point (type
double​). The clue says you want the 5th smallest element casted to an integer. True, you could just
go through the array but, being a proper CS student, you decide to first sort the array using a library
function and then take the 5th element. Fortunately, C has a quicksort function in the standard library:
void qsort (void * base, size_t num, size_t size,

 int (* comparator) (const void *, const void *));
That is, the function takes four arguments: a pointer to the array, the total number of elements, the size
of each element of the array, and a comparison function. The comparison function should return
negative if the first element is less than the second, 0 if they are the same, or positive if the first element
is bigger. Your code should compile without warnings.

int comp(void *p1, void *p2){

 double a = ​*((double *) p1);

 double b = ​*((double *) p2);

 return ​a-b​ ; /* C will cast a double to an int automagically */

}

void clue2(double* info2, int len) {

 qsort(​info2, len, sizeof(double), &comp);

 printf(“%i\n”, ​(int) info2[4]​);

}

MT 1 Page 9 of 14 CS61C - SP 20

(c) You arrive at the room, only to find a door locked with a keycode. Spray painted on the wall, you see
“How many stairwells have a power-of-two number of steps? Print the answer ​in hex​...”

So close to your goal, you crowdsource this question to your favorite social media. Enlisting a friend
taking CS 186, you end up with an array of step counts for all stairs which are all positive integers.
Create a function to see the total number of stairwells with exactly a power of 2. Hint: you know ​X​ is a
power of 2 if and only if ​X​ and ​X-1​ have no bits in common and ​X​ is nonzero. You do not need to use all
the lines.
There are multiple valid methods to approach this question. The staff solution requires the least number
of lines, and uses the hint that x and x-1 have no bits in common for a power of 2. A power of 2 is
found for any non-zero value where the logical and of x and x-1 results in a zero value (thus ​stairs[i]
is checked to ensure a non-zero value, then ​(​stairs[i] & (stairs[i]-1))​ is tested for a zero value.
Another way to check if the entry is a power of two which is possible with the given lines is to test each
bit within the entry and make sure only one bit has a 1 value. Finally, ​printf​ is called with %x, printing
the number of entries in hexadecimal (given by the chart below).

void pows_of_2(unsigned int* stairs, int len) {

 int matching_entries = 0;

 __;

 __;

 for (int i = 0; i < len; i++) {

 ​__;

 ​if (​stairs[i] && ​(​stairs[i] & (stairs[i]-1)) == 0​) {

 ​matching_entries += 1;

 }

 ​__;

 }

 printf(​“%x\n”​, ​matching_entries​);

}

MT 1 Page 10 of 14 CS61C - SP 20

Print format specifier table.

Specifier Output Specifier Output

d or i Signed decimal integer E Scientific notation (mantissa/exponent), uppercase

u Unsigned decimal integer g Use the shortest representation: %e or %f

o Unsigned octal G Use the shortest representation: %E or %F

x Unsigned hexadecimal integer a Hexadecimal floating point, lowercase

X Unsigned hexadecimal integer (uppercase) A Hexadecimal floating point, uppercase

f Decimal floating point, lowercase c Character

F Decimal floating point, uppercase s String of characters

e Scientific notation (mantissa/exponent),
lowercase

p Pointer address

MT 1 Page 11 of 14 CS61C - SP 20

Q6) ​Fl_at___ P_int _u_bers​ ​(9 pts = 3 * 3)
You received a sequence of IEEE standard 16-bit floating point numbers from your friend. So you don’t need to
look it up on your green sheet, we will remind you that a 16-bit floating point is ​1 sign bit, 5 exponent bits, and
10 mantissa bits​. The bias for the exponent is ​-15​.

Unfortunately, cosmic rays corrupted some of the data, rendering it unreadable. For the following problems, we
will use “x” to refer to a bit that was corrupted (in other words, we don’t know what the sender wanted that bit to
be). For example, if I received the data “0b0xx1”, the sender sent one of “0b0001”, “0b0101”, “0b0011”, or
“0b0111”.

a) You receive the data “0b0x1x0x1x0x1x0x1x”. What is the​ hexadecimal encoding ​of the ​biggest
number​ the sender could have sent?

0x​7777

Answer: 0x7777. One property of floating point numbers is that their order is the same as that of
sign-magnitude integers (ignoring NaNs); for example, 0x5555 < 0x7555. In order to maximize the
number, we therefore want to set all the “x”s to 1. This yields the encoding 0x7777.

b) You receive the data “0b1110xxxxxxxxxxxx”. What is the ​decimal value​ of the ​smallest number​ the

sender could have sent (i.e. it is less than all of the other possibilities)? You must provide the decimal
form, ​do not leave as a power of 2​.

-8188

Answer: -8188. By the previous observation, the smallest number is encoded by 0xEFFF. This has sign
bit 1, exponent 0b11011 - 15 = 12, and mantissa (1).1111111111 = 2-2^-10. Our answer is thus
-4096*(2-2^-10) = -8192+4=-8188

c) For the next number, the sign and exponent are correct but all of the mantissa was corrupted. The

sender did not send a NaN or infinity. What is the ​smallest possible​ positive number the sender could
have sent ​as a power of 2​?

2​-24

The smallest possible power of 2 is when we receive the bits “0b000000xxxxxxxxxx”, with the
corrupted bits being filled by “0b0000000000000001”. This is equal to 2^-14 * 2^-10 = 2^-24.

MT 1 Page 12 of 14 CS61C - SP 20

Q7) ​RRIISSCC-VV​ ​(12 pts)

In this question, you will implement a simple recursive function in RISC-V. The function takes a decimal number
as input, then outputs it’s binary representation encoded in the decimal digits.

int findBinary(unsigned int decimal) {

if (decimal == 0) {

 return 0;

} else {

 return ​decimal % 2​ + ​10 * findBinary(​decimal / 2​)​;
}

}

For example, if the input to this function is ​10​, then the output would be ​1010​.

findBinary:

 addi sp, sp, -8 # preamble... a0 will have arg and be where we return

 sw ra, 4(sp) ​saving return addresses on the stack

 sw s0, 0(sp) ​saving ​“decimal % 2”​ ​on the stack

 beq a0, x0, ​postamble ​ # base case, we will just return 0

 ​andi ​s0​, a0, 1​ # ​set s0 to a0 % 2, ​“decimal % 2”

 ​srli ​a0​, a0, 1​ # ​set a0 to a0 / 2, ​“​decimal / 2”

 new argument for recursive call

 jal ra, ​findBinary​ # recursive call

 ​li t0, 10/addi t0, x0, 10​ # Load the value 10 into t0

 ​mul a0, t0, ​a0​ # a0 = a0 * 10,

 a0 = 10 * accumulated return values from recursive calls

 ​add a0, a0, s0​ #​ a0 = ​s0​ + a0,

 accumulating the stored return value ​“decimal % 2”

 With return value from recursive calls

postamble:

 ​lw ra, 4(sp)​ # Restore ra ​loading back previously saved return addresses

 ​lw ​s0​, 0(sp)​ # restore s0 ​loading back previously saved ​“decimal % 2”​ ​from stack

 ​addi sp, sp, 8​ # restore sp

end:

 jr ra

The recursive part of the function stores all of the first part of the return value​ ​“decimal % 2” ​on the stack
The second part of the function and postamble are combing all the return values by ​ “+” and “10 * ”

MT 1 Page 13 of 14 CS61C - SP 20

Good Luck, and ​Don’t F@#)(* It Up!

MT 1 Page 14 of 14 CS61C - SP 20

	CS61C Spring 2020 Midterm 1 SOLUTIONS (2)
	Midterm 1 Clarifications (1)
	CS61C Spring 2020 Midterm 1 SOLUTIONS (2)

