

University of California, Berkeley – College of Engineering

Department of Electrical Engineering and Computer Sciences
Summer 2019 Instructors: Branden Ghena, Morgan Rae Reschenberg, Nicholas Riasanovsky 2019-07-08

CS61C MIDTERM 1
Last​ Name (Please print clearly)

First​ Name (Please print clearly)

Student ID Number

Circle the name of your Lab TA

Ayush
Maganahalli

Chenyu
Shi

Gregory
Jerian

Jenny
Song

John
Yang

Lu
Yang

Ryan
Searcy

Ryan
Thornton

Name of the person to your: Left | Right

All my work is my own. I had no prior knowledge of the exam
contents nor will I share the contents with others in CS61C who

haven’t taken it yet. ​(please sign)

Instructions
● This booklet contains 14​ pages including this cover page. ​The back of each page of this exam is

blank and can be used for scratch work, but will not be graded​.
● Please turn off all cell phones, smartwatches, and other mobile devices. Remove all hats and

headphones. Place ​everything​ except your writing utensil(s), cheat sheet, and beverage underneath
your seat.

● You have 80 minutes to complete this exam. The exam is closed book: no computers, tablets, cell
phones, wearable devices, calculators, or cheating. You are allowed one page (US Letter,
double-sided) of ​handwritten​ notes.

● There may be partial credit for incomplete answers; write as much of the solution as you can.
● Please write your answers within the boxes and blanks provided within each problem!
● For all coding questions you may only use functions from .h files that ​have already been included​ and

any functions you use must work on ​all common platforms​ (Windows, Mac, Linux)

Question 1 2 3 4 5 6 Total

Possible Points 17 14 16 18 16 9 90

If you have the time, ​feel free to doodle on the front page!

1

Question 1: We’re bored of Euclid. (Number Representation) - 17 pts

Morgan, Nick, and Branden are disappointed in the selection of food available near Soda, so they open a store
selling many different kinds of products. They need YOUR help to come up with a barcode scheme for
everything they sell.

1. Branden wants to assign each product in the store its own unique number. This will be encoded as the
barcode. If they sell 29 unique items, what is the smallest number of bits they can use to encode the
barcode?

Product Number

Barcode = _____________ bits

2. When the store runs out of a particular item, it would be helpful to see what other kinds of that item there
are in stock. Morgan proposes adding a “product group” field to the barcode in addition to the existing
product number. Note that now each product number does not need to be globally unique and instead
just needs to be unique within its product group. If there are 5 unique product groups, what is the
smallest number of bits they can use for the product group field?

Product Group Product Number

Product Group = ________ bits

2

3. We expand to have 12 product groups. The largest has 15 items in it while the smallest has one item.

Nick argues the entire barcode can now be condensed to only 6 bits without losing product grouping or
unique identifiers. Is he correct? If yes, explain why, if no, what is the actual minimum size?

[] Yes, he is correct [] No, he is incorrect

__

__

__

4. The team decides on the following barcode field sizes (which may or may not reflect your answers
above).

Product Group (4 bits) Product Number (5 bits)

Morgan loads all the barcodes into the database but runs into a problem; she’d like to reserve the
barcode of all zeros (so, product group = 00...0, product number = 00...0) for products that are out of
stock. Assuming there are 8 product groups holding between 1 and 31 products each, can she
implement the all-zero barcode without adding bits to the scheme? Explain.

[] Yes, she can [] No, she can’t

__

__

__

5. Business is booming and the team has the opportunity to expand! They purchase a new store and
modify the barcode to keep track of products sold at store 0 and store 1 separately.

Store Code (1 bit) Product Group (4 bits) Product Number (5 bits)

Assuming the same item sold across stores differs ONLY in the top bit (that is, they have the same
product group and product number regardless of the store they’re sold at) what is the maximum number
of items Morgan, Nick, and Branden can uniquely identify with this barcode scheme? You may leave
your answer as an unsimplified equation.

____________ Unique Items

3

Question 2: Remember remember the segments of memory. - 14 pts

#include <stdlib.h>

#include <stdbool.h>

bool fetch_data (char* buf);

char* receive_buffer;

bool is_complete = false;

int main(int argc, char* argv[]) {

receive_buffer = malloc(100*sizeof(char));

if (!receive_buffer) {

return -1;

}

fetch_data(receive_buffer);

free(receive_buffer);

return 0;

}

/* Function that takes in a buffer for storing characters

 * and places data in the buffer by calling receive_data.*/

void fetch_data(char* buf) {

int len = receive_data(receive_buffer);

if (len == 0) {

return; // HERE

} else {

fetch_data(buf + len);

}

}

All of the following expressions ​evaluate​ to an address value. State in which region of memory each value
corresponds to: stack, heap, static, or code. Assume we are about to execute the line marked ​HERE​.

1. receive_buffer Ⓐ Code Ⓑ Static Ⓒ Stack Ⓓ Heap
2. &(receive_buffer[0]) Ⓐ Code Ⓑ Static Ⓒ Stack Ⓓ Heap
3. &receive_buffer Ⓐ Code Ⓑ Static Ⓒ Stack Ⓓ Heap
4. &argc Ⓐ Code Ⓑ Static Ⓒ Stack Ⓓ Heap
5. &is_complete Ⓐ Code Ⓑ Static Ⓒ Stack Ⓓ Heap
6. &fetch_data Ⓐ Code Ⓑ Static Ⓒ Stack Ⓓ Heap
7. buf Ⓐ Code Ⓑ Static Ⓒ Stack Ⓓ Heap

4

Now consider the following different program:

// function prototypes

int a(int x);

int b(int y);

int main(void) {

a(3);

return 0;

}

int a(int x) {

return b(x - 1);

}

int b(int y) {

if (y <= 1) {

return 7; // HERE

} else {

return a(y - 1);

}

}

Assume we are about to execute the line marked ​HERE​. Label all the stack frames below with either the function
that created the frame: a, b, or main, or with UNUSED if the frame is not in use.

Memory (Top)

1 1. ​Ⓐ a Ⓑ b Ⓒ main Ⓓ UNUSED

2 2. ​Ⓐ a Ⓑ b Ⓒ main Ⓓ UNUSED

3 3. ​Ⓐ a Ⓑ b Ⓒ main Ⓓ UNUSED

4 4. ​Ⓐ a Ⓑ b Ⓒ main Ⓓ UNUSED

5 5. ​Ⓐ a Ⓑ b Ⓒ main Ⓓ UNUSED

6 6. ​Ⓐ a Ⓑ b Ⓒ main Ⓓ UNUSED

7 7. ​Ⓐ a Ⓑ b Ⓒ main Ⓓ UNUSED

5

Question 3: Help, there’s a moth in my computer! (Debuggin’ ;) - 16 pts
For each of the following functions there are comments about what certain lines are meant to do. Mark any lines
whose contents ​DO NOT​ accomplish what the comment asks it to do. If everything functions as described, mark
“no errors”. Note the comment ABOVE describes the line(s) BELOW.

We have also provided a comment about what the whole function is meant to do, but that should not be
necessary to complete this question (although you may find it helpful when trying to understand the code). For
this section you may assume that the file contains all necessary includes, that all calls to malloc succeed, and
that all input arguments to the functions are valid.

1.

/* Function that takes in an array of integers, mallocs space for a new array,

 * and copies the integers from the first array into the new array. It returns

 * the new array.*/

int* copy_ints(int* arr) {

 /* Allocates space to store all integers in arr. */

[] int* new = malloc(sizeof(arr));

 /* Iterates over all the elements in arr. */

[] for (int i = 0; i < sizeof(arr); i++) {

 /* Loads an element from arr and stores it in new. */

[] *(new + i) = *(arr + i);

 }

 /* Returns a pointer that can be dereferenced in other functions. */

[] return new;

}

[] no errors

6

2.

/* Function that takes in an integer, interprets it as a boolean value,

 * and returns a string that can be dereferenced outside the function

 * indicating if it was true or false.*/

char* bool_to_string (int i) {

 /* Allocates space for a pointer. */

[] char* ret_val;

 /* Evaluates to true on all false values and false on all true values. */

[] if (i == 0) {

 ret_val = "false";

 } else {

 ret_val = "true";

 }

 /* Returns a pointer that can be dereferenced in other functions. */

[] return ret_val;

}

[] no errors

3.

/* Function that takes in a non-null-terminated string and its length and

 * returns a pointer to a malloc’d, null-terminated copy of the string.*/

char* null_term(char* str, unsigned int len) {

 /* Allocates space to store a null-terminated version of str. */

[] char* copy = (char*) malloc(sizeof(char) * len);

 /* Iterates over all the elements of str. */

[] for (int i = 0; i < len; i++) {

 /* Loads an element from str and stores it in copy. */

[] copy[i] = *(str++);

 }

 /* Appends a null terminator to the end of copy. */

[] copy[len] = '\0';

 /* Returns the string, that can be dereferenced in other functions. */

[] return ©

}

[] no errors

7

4.

/* Function that takes in the start of a linked list, mallocs space for a

 * new element, appends that element to the front, and returns the new start

 * of a linked list.*/

typedef struct int_node {

 int value;

 struct int_node* next;

} int_node_t;

int_node_t* append_front(int_node_t* current, int value) {

 /* Allocates space for a new int node. */

[] int_node_t* new = malloc(sizeof(int_node_t*));

 /* Assigns the value field to the value parameter. */

[] new->value = value;

 /* Assigns the next field to the current front. */

[] (*new).next = current;

 /* Returns a pointer that can be dereferenced in other functions. */

[] return new;

}

[] no errors

8

Question 4: The cat videos need better captions!! (C Programming) - 18 pts

We’ve decided that YouTube isn’t doing a good enough job of captioning its videos, and we’re going to do it for
them. To do so, we created a structure that holds a caption and a structure that holds an array of these captions
(enough for the entire video).

typedef struct {

char* text; // pointer to a valid, null-terminated C string

int timestamp;

} caption_t;

typedef struct {

caption_t* array; // pointer to “length” consecutive caption_t structs

int length;

} video_caption_t;

1. What is the size of each of the following variables in bytes? (i.e., what would ​sizeof​ return?)
We are on a 32-bit architecture, and you can assume that ​sizeof(int) == 4​. You can leave your
answer in the form of an equation rather than multiplying out.

You may not use ​sizeof ​as part of your answer.

caption_t many_captions[100]; __

caption_t* many_captions_ptr[200]; __

caption_t** many_captions_double_ptr; __

video_caption_t whole_video_captions; __

video_caption_t* whole_video_caption_ptr; __

9

2. Implement the following function to find the length of the longest caption in a video. This length excludes
the null terminator (i.e., it’s a count of the number of characters in the text of the caption).

You can use any functions in the ​string.h​ library to help you with this task. You can assume that all the
memory for the input argument has been properly allocated and that all strings within it are null
terminated. You may not need all lines for your code.

#include <string.h>

typedef struct {

char* text; // pointer to a valid, null-terminated C string

int timestamp;

} caption_t;

typedef struct {

caption_t* array; // pointer to “length” consecutive caption_t structs

int length;

} video_caption_t;

/* Returns the length of the longest caption text in the video.

 * (length does not include the null terminator) */

int longest_caption(video_caption_t* video) {

int max_len = 0;

for (int i=0;​ ​__; i++) {

___;

if (___) {

___;

}

}

return __;

}

10

3. Implement the following function to combine the captions from two videos together into a new
video_caption_t​ structure and return a pointer to it. ​Do not modify the contents of the input
arguments​. You can copy the pointers to the text strings, and do not need to copy their characters. You
can use any functions in ​stdlib.h​. You can assume that all the memory for input arguments has been
properly allocated and that all strings within them are null terminated. You may use ​sizeof ​when
calculating sizes. You may not need all lines for your code.

#include <stdlib.h>

typedef struct {

char* text; // pointer to a valid, null-terminated C string

int timestamp;

} caption_t;

typedef struct {

caption_t* array; // pointer to “length” consecutive caption_t structs

int length;

} video_caption_t;

/* Concatenates two video captions together into a single new video caption structure */

video_caption_t* combine_captions(video_caption_t* video_one, video_caption_t* video_two){

video_caption_t* new_video = malloc(___);

int first_len = video_one->length;

int second_len = video_two->length;

new_video->length = first_len + second_len;

new_video->array = malloc(___);

for (int i=0; i<first_len; i++) {

__;

__;

}

for (int i=0; i<second_len; i++) {

__;

__;

}

return new_video;

}
11

Question 5: I GOT RISC-V ON IT. - 16 pts

Fill in the blanks to implement ​strncpy ​in RISC-V. You may not need all lines.

char* strncpy(char* destination, char* source, unsigned int n);

strncpy​ takes in two ​char*​ arguments and copies up to the first ​n​ characters from ​source​ into ​destination​.
If it reaches a null terminator, then it copies that value into ​destination​ and stops copying in
characters​. If there is no null terminator among the first ​n​ characters of ​source​, the string placed in
destination​ will not be null-terminated. You may not store anything on the stack for this problem.

strncpy​ returns a pointer to the ​destination​ string​.

Hint​: Assume the calling convention earned in lecture!

strncpy:

add t0 x0 x0 # Current length

Loop:

beq ___ End

__

__()

__

__()

__

bne ___ Loop

End:

12

Question 6: More debugging!! Yay! - 9 pts

Morgan is interested in exchanging secret messages with Branden, but she doesn’t want Nick to be able to read
them. She writes the following secret_encoder function which takes in a string and its size and increments all
the characters by thirteen to make a rotational cipher. Assume inputs never cause overflow and all necessary
libraries are included.

void secret_encoder(char* arr, int len) {

printf("Encoding: %s\n", arr);

for (int i = 0; i < len; i++) {

arr[i] += 13;

}

printf("Result: %s\n", arr);

}

Morgan decides, like any good CS61C student, she should test her code on a few examples. She writes the
following function call.

int main(int argc, char* argv[]) {

char hello[5] = “Hello”;

secret_encoder(hello, 5);

return 0;

}

Using an ASCII table, she calculates her expected output to be:

Encoding: Hello

Result: Uryy|

However, when she runs the code, her actual output is:

Encoding: Hello??_??

Result: Uryy|??_??

1. Which of the following ​best​ describes Morgan’s issue:

Ⓐ​ Null pointer exception
Ⓑ​ Uninitialised variable
Ⓒ​ Missing a null terminator
Ⓓ​ Memory management mistake

13

2. Branden and Morgan try to work together to fix their code, but they encounter some issues. Read
through various implementations of the file below and ​select which implementations​ are correct​ for the
program to produce the described output from above.​ Assume all necessary libraries are included.

Which implementation(s) are correct?: ___

Implementation A

void secret_encoder(char* arr)

{

 printf("Encoding: %s\n", arr);

 for (int i = 0; i < strlen(arr); i++)

 {

 arr[i] += 13;

 }

 printf("Result: %s\n", arr);

}

int main(int argc, char* argv[])

{

 char hello[5] = “Hello”;

 secret_encoder(hello);

 return 0;

}

Implementation B

void secret_encoder(char* arr, int len)

{

 printf("Encoding: %s\n", arr);

 for (int i = 0; i < strlen(arr); i++)

 {

 arr[i] += 13;

 }

 printf("Result: %s\n", arr);

}

int main(int argc, char* argv[])

{

 char hello[5] = “Hello”;

 secret_encoder(hello, 5);

 return 0;

}

Implementation C

void secret_encoder(char* arr, int len)

{

 printf("Encoding: %s\n", arr);

 for (int i = 0; i < len; i++)

 {

 arr[i] += 13;

 }

 printf("Result: %s\n", arr);

}

int main(int argc, char* argv[])

{

 char hello[6] = “Hello”;

 secret_encoder(hello, strlen(hello));

 return 0;

}

Implementation D

void secret_encoder(char* arr, int len)

{

 printf("Encoding: %s\n", arr);

 for (int i = 1; i < len + 1; i++)

 {

 arr[i] += 13;

 }

 printf("Result: %s\n", arr);

}

int main(int argc, char* argv[])

{

 char* hello = “Hello”;

 secret_encoder(hello, 5);

 return 0;

}

14

