
CS 61C Great Ideas in Computer Architecture
Summer 2020 Final

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address cs61c@berkeley.edu. If this is not your email address,
notify course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends,
as some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for cs61c@berkeley.edu 2

Preliminaries

Please complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) If an answer requires hex input, make sure you only use capitalized letters! For example, 0xDEADBEEF
instead of 0xdeadbeef. You will be graded incorrectly otherwise! Please always add the hex (0x) and
binary (0b) prefix to your answers or you will receive 0 points. For all other bases, do not add the suffix or
prefixes.

Do not add units unless the problem explicitly tells you to!

Some of the questions may use images to describe a problem. If the image is too small, you can click and
drag the image to a new tab to see the full image. You can also right click the image and download it or
copy its address to view it better. You can use the image below to try this. You can also click the star by
the question if you would like to go back to it (it will show up on the side bar). In addition, you are able
see a check mark for questions you have fully entered in the sidebar. Questions will auto submit about 5
seconds after you click off of them, though we still recommend you click the save button.

Good luck!

Exam generated for cs61c@berkeley.edu 3

1. Virtual Memory

(a) We are working with a system with a 4 GiB physical memory, and 16 MiB virtual memory, and a page size
of 4 KiB. For each PTE, we choose to store 12 bits of metadata (dirty bit, permissions).

i. For this part, assume we are working with a single level page table.

A. (0.5 pt) How many bits are in the page offset?

12

log2(size of page) = log2(2
12) = 12

B. (0.5 pt) How many bits are in the PPN?

20

log2(size of PM)− pg offset bits = log2(2
32)− 12 = 20

C. (0.5 pt) How many bits are in the VPN?

12

log2(size of VM)− pg offset bits = log2(2
24)− 12 = 12

D. (0.5 pt) How many bits are in a PTE?

32

PPN bits + # metadata bits = 20 + 12 = 32

Exam generated for cs61c@berkeley.edu 4

(b) For the rest of the problem, we will be working with a 2-level, hierarchical page table with no TLBs.
Assume the VPN bits are split evenly between levels, so every PT at every level has the same number of
PTEs.

i. For each page table level, calculate the number of PTEs in total, across all possible page tables in that
level.

A. (0.5 pt) L1 Number of PTEs

64

L1 PTs * # of PTEs in L1 PT = 1 * 2ˆ6 = 64

B. (0.5 pt) L2 Number of PTEs

4096

L2 PTs * size of L2 PT = 2ˆ6 * 2ˆ6 = 2ˆ12 = 4096

Exam generated for cs61c@berkeley.edu 5

ii. (2.0 pt) Let’s say the computer just started up, meaning that the page table has yet to allocate any
pages in the physical memory. We then store 8 contiguous bytes to memory. In the worst case, how
many page tables will we use?

3

The 8 contiguous bytes could span 2 pages in the worst case. This means we would need to al-
locate space for two L2 pages tables in addition to one L1 page table = 3 total PTs.

iii. Consider the following hierarchical page table. Regardless of your previous answers, assume that there
are 64 PTEs in each page table. Arrows from one level to another represent a valid PTE for the page
tables, or page for physical memory. The indices of the PTEs/pages are ordered from the top-down,
i.e. the top-most refers to index 0. Only consider slots with a letter inside of them.

Multi-Level Page Table

Given the following PTEs accessed at each level, reconstruct the virtual and physical addresses in hex.
If the data provided creates an invalid address, your answers should be N/A. For all memory accesses,
we are attempting to access the 0th byte of the page.

L1 PTE: E
L2 PTE: K

Exam generated for cs61c@berkeley.edu 6

A. (2.0 pt) Virtual Address

0xFC2000

Address breakdown: 6 bits for L1 VPN, 6 bits for L2 VPN, 12 bits for offset.

E is located at the bottom-most index = 63 (since by part (a)(i) the L1 PT has 64 entries, or by
recomputing this, if we have 6 bits for the L1 VPN, then we have 64 PTEs). So the L1 VPN is 63,
which points to the “bottom” L2 PT. There, we use PTE K, which is the 2nd from the top, so the
L2 VPN = 2. Lastly, we need the offset. Since it is stated that we want the 0th byte of the page,
our offset is 0.

Therefore, our VA is L1 VPN | L2 VPN | Offset = 111111 | 000010 | 00000000000 = 0xFC2000

B. (2.0 pt) Physical Address

0xFFFFD000

Address breakdown: 20 bits for PPN, 12 bits for offset

L2 PTE K has an arrow to page Q in physical memory, which is indexed 2rd from the bottom. To
get this exact value, we need to know how many pages there are in physical memory: 2ˆ32 / 2ˆ12
= 2ˆ20 pages. PPN = 0xFFFFF - 0x2 = 0xFFFFD. PA = PPN | Offset = 0xFFFFD000

Exam generated for cs61c@berkeley.edu 7

iv. Given the following virtual addresses, first identify whether it is a page hit or page fault. If it is a hit,
write out the sequence of “letters” that make up the path. If it page faults, then you must play the role
of the OS, create the appropriate mapping given the available PTEs/physical pages, and leave your
answer as the new path that will now be taken. Format your answer without spaces between
the letters e.g. ABC.

A. VA = 0xF83000

B. (0.5 pt)

Page Fault

 Page Hit

C. (1.5 pt) Path

DIO

The VPNs are in the first 12 bits: 111110 | 000011. L1 VPN is 62 so we look at PTE D,
which points to the “middle” L2 PT. L2 VPN is 3, so we look at PTE I. This finally points to page
O.

Exam generated for cs61c@berkeley.edu 8

D. VA = 0x0C3000

E. (0.5 pt)

 Page Fault

Page Hit

F. (1.5 pt) Path

CGP

The VPNs are in the first 12 bits: 000011 | 000011. L1 VPN is 3, so we look at PTE C,
which points to the “top” L2 PT. L2 VPN is 3 as well, so we look at PTE G, where there is no
arrow, so we page fault and assign it a valid mapping to page P.

Exam generated for cs61c@berkeley.edu 9

2. TLP

In signal processing, the technique of cross-correlation (or sliding dot-product) is often used to determine the
delay of a signal. In this problem, we will implement a cross-correlation function in C, parallelized of course!
(You don’t need to know anything about EE to ace this problem!) :0

The following function, sliding_dot, takes two arrays. original contains an array of length n and other
contains n + k elements. We will shift other k times, and for each shift, compute its dot product with original.
We then store these values in result.

We want to parallelize sliding_dot with OpenMP. Examine our attempts below and choose the behavior(s)
you expect from each version. Assume the processor has four threads, 32B cache blocks, and sizeof(int) =
4.You may also assume that all calls to calloc() succeed.

Here is the template of the code where we will replace the /* OPTIMIZED CODE */ with the code on each
question.

int * sliding_dot(int * other, int * original, int n, int k) {
int * result = (int *) calloc(k * sizeof(int))
// shift the array
for (int shift = 0; shift <= k; shift++) {

/* OPTIMIZED CODE */
}
return result;

}

(a) (2.0 pt)

int * shifted = other + shift;
int dot_product = 0;
#pragma omp parallel for private(dot_product)
for (int i = 0; i < n; i++) {

#pragma omp critical
dot_product += shifted[i] * original[i];

}
result[shift] = dot_product;

How will this code behave?

2 Always Correct, faster than serial

� Sometimes Incorrect

2 Always Correct, slower than serial

Exam generated for cs61c@berkeley.edu 10

(b) (2.0 pt)

int * shifted = other + shift;
int dot_product = 0;
#pragma omp parallel for reduction(+:dot_product)
for (int i = 0; i < n; i++) {

#pragma omp critical
dot_product += shifted[i] * original[i];

}
result[shift] = dot_product;

How will this code behave?

� Always Correct, slower than serial

2 Always Correct, faster than serial

2 Sometimes Incorrect

(c) (2.0 pt)

int * shifted = other + shift;
int dps[4] = {0,0,0,0};
#pragma omp parallel
{

#pragma omp for
for (int i = 0; i < n; i++) {

int id = omp_get_thread_num();
dps[id] += shifted[i] * original[i];

}
}
result[shift] = dps[0] + dps[1] + dps[2] + dps[3];

How will this code behave?

� Always Correct, faster than serial

� Always Correct, slower than serial

2 Sometimes Incorrect

The intended answer was that the code ends up being slower. Note that the due to false sharing and
MOESI, elements of dps in the same cache block will have to continuously kick each other out, thus
slowing down the code to slower than serial. Note that we specify the size of a cache block as 32 B.

However, this applies only when the array is block-aligned. In reality, we can expect that this array is
randomly placed in a word-aligned location. Some of these will indeed be such that dps takes up two
cache blocks, thus creating up to a 2x speedup. It is thus dependent on the exact location of dps, whether
the parallelized version runs faster or slower than serial.

Exam generated for cs61c@berkeley.edu 11

(d) (2.0 pt)

int * shifted = other + shift;
int dot_product = 0
#pragma omp parallel for
for (int i = 0; i < n; i++) {

dot_product += shifted[i] * original[i];
}
result[shift] = dot_product;

How will this code behave?

2 Always Correct, slower than serial

2 Always Correct, faster than serial

� Sometimes Incorrect

Exam generated for cs61c@berkeley.edu 12

3. Pipeline

We wish to implement SIMD instructions in our pipelined RISC-V datapath. In order to do so, we will take 2
steps:

Combine the IF and ID stages into an IFD stage Create 2 paths for the datapath to take after IF: one path for
normal RISC-V instructions and one for SIMD RISC-V containing specialized hardware.

The only problem is that the SIMD EX stage takes 3 cycles to complete instead of 1, and no other SIMD
instruction is allowed to enter the SIMD EX stage while another SIMD instruction is there.

Pipeline

(a) (3.0 pt) This “delay” from the SIMD EX stage necessitates the use of stalls to ensure proper functionality.
Which of the following implementations correctly generates the stall signal? You may ignore any kinds
of stalls caused by hazards; we are only concerned with this special case in our new pipeline. However, we
still want to maintain a good instruction throughput. To do this, we should allow normal instructions to
continue through the CPU, as they are not blocked from doing so by the SIMD path.

The signal SIMD_Inst is an indicator that the current instruction fetched from IFD is a SIMD instruction,
while the signal SIMD_count refers to the number of the cycle the SIMD instruction is completing in the
EX stage, i.e. when it is in the first cycle of the EX stage, SIMD_count = 1. If there is no instruction in
the SIMD EX stage, this value is 0. The comparators are unsigned. Select all that apply.

2 None of the other options

2 B

2 D

2 A

� C

C. We need to stall when we fetch a SIMD instruction, but one is already in the EX stage and will remain
there for the next cycle (i.e. simd_count >= 1, but <= # of cycles for EX - 1 = 2). Otherwise, if a
normal instruction is fetched, it can just be pushed to the Normal path, and no stall is needed.

Exam generated for cs61c@berkeley.edu 13

Pipeline 1

Pipeline 2

Exam generated for cs61c@berkeley.edu 14

(b) (3.0 pt) Because we wish to actually stall and not flush, how should the PC and PC mux be updated to
allow for this? Assume stall is a signal that is 1 when we should stall, and therefore not fetch a new
instruction, or 0 otherwise. Select all that apply.

� B

� D

2 C

2 None of the other options

2 A

B, D

When stall = 1, we want the new PC to be the old PC, otherwise the behavior should be unchanged.
Option A is incorrect since the selector bits of 1 or 2 will never be chosen; 0 will be sign extended to 00
(PC+4), while 1 will be sign extended to 11 (undefined). Option B is correct. Option C is close, but
incorrect as ALUout is at index 2 of the mux, which is unreachable as the normal PCSel = 1 that would
choose the ALUout becomes 11 after sign extension. Option D is correct.

(c) (2.0 pt) How many stalls caused by the SIMD EX stage are needed for the following piece of code?

1. addi t0, x0, 1
2. simd_add x1, x2, x3
3. simd_sub x2, x1, x3
4. addi t1, t0, 2
5. simd_mul x2, x2, x2
6. sub t0, t0, t1
7. mul t0, t0, t0
8. simd_div x2, x2, x1

3

Line 2 adds 2 stalls.

Line 5 adds 1 stall left over from simd_sub.

Exam generated for cs61c@berkeley.edu 15

4. SDS, Logic

We will be analyzing the following circuit:

Circuit
Given the following information:

• AND gates have a propagation delay of 9ns
• OR gates have a propagation delay of 14ns
• NOT gates have a propagation delay of 5ns
• x_input switches value(i.e. 1 to 0, 0 to 1) 30 ns after the rising edge of the clk
• y_output is directly attached to a register
• Setup time is 3ns
• Clk-to-q delay time: 4ns

(a) (2.0 pt) What is the max hold time in ns?

18

Shortest CL: NOT -> AND = 5 + 9 = 14ns clk-to-q + shortest CL = 4ns+14ns = 18ns

(b) (2.0 pt) What is the minimum clock period in ns?

42

Critical path = clk-to-q + longest CL + setup = 30ns for x_input to change (includes clk-to-q) +
9 AND + 3 setup = 42 ns

(c) (3.0 pt) Regardless of your previous answers, assume the clock period is 50ns, the first rising edge of the
clock is at 25 ns and x_input is initialized to 0 at 0ns. At what time in ns will y_output become 1?

102

25+50(clock period)+4(clk-to-q)+14(OR)+9(AND) = 102 ns

Exam generated for cs61c@berkeley.edu 16

(d) (3.0 pt) How long will y_output remain equal to 1 before switching to 0?

41

If y_output changes to 1 at 102, the next rising edge is at 125. From there, it takes Clk-Q (4) +
OR (14) + AND (9) = 27 ns to update y_output to 0 again, so at 125 + 18 = 152 ns, 152 - 102 = 50 ns

To see what is happened during each clock period:

During 0th clock period (starts before question): x_input stabilizes at 0, inputs to Reg0 and Reg1 stabilize
at 0

During 1st clock period (starts at 25ns): x_input stabilizes at 1, input to Reg0 stabilizes at 1, y_output
stabilizes at 0 –> input to Reg1 stabilizes at 0

During 2nd clock period (starts at 75ns): x_input stabilizes at 0, input to Reg0 stabilizes at 0, y_output
stabilizes at 1, input to Reg1 (AND of current x_input and current y_output) stabilizes at 0

During 3rd clock period (starts at 125ns): x_input stabilizes at 1, input to Reg0 stabilizes at 1, y_output
stabilizes at 0 –> input to Reg1 stabilizes at 0

Exam generated for cs61c@berkeley.edu 17

5. Single Cycle Datapath

(a) Which of the following components are not utilized by the given instruction? As in, the output(s) of the
component are not useful to the overall execution of the instruction. Select all that apply.

i. (2.0 pt) lui s2, 0xC561C

� Branch comparator

2 Register File

2 Immediate generator

2 All components are utilized by this instruction

2 IMEM

ii. (2.0 pt) jal ra, label

2 PC register

2 Control Logic Unit

� DMEM

2 All components are utilized by this instruction

2 ALU

Exam generated for cs61c@berkeley.edu 18

(b) You’ve been running multiple recursive programs on your RISC-V CPU lately, and noticed that one of the
main causes of slowdown is that you always have to save ra onto the stack before you do the recursive call.
You decide to modify your current single-cycle RISC-V datapath to implement an instruction that can
save to the stack and jump at the same time.

Jump-and-save

jas label

R[ra] = PC + 4, R[sp] = sp - 4, PC = PC + offset, Mem[sp - 4] = PC + 4

If the jas instruction is ran, the correspondingly named signal is set to 1.

Exam generated for cs61c@berkeley.edu 19

i. (2.0 pt) Which of the following will correctly implement sp_wb, the value that will get written back
to sp? spMinus4 is a pre-computed value equal to sp - 4.

sp_wb Choices

2 D

2 E

� A

2 B

2 C

After the solutions were released, some students pointed out that the move to make sp_wb and
SPWEn the exclusive method of writing to sp caused more logical complexity than is shown, such
as changing the RegFile to ignore RegWEn when dealing with sp. Due to the lack of clarity in this
regard, there was no penalty for putting D.

Exam generated for cs61c@berkeley.edu 20

RegFile Choices

Exam generated for cs61c@berkeley.edu 21

ii. (2.0 pt) Now that we have sp_wb, which of the following will correctly write it back to the RegFile?
SPWEn is a signal analogous to RegWEn: it is 1 when we wish to write to sp and 0 otherwise.
Furthermore, if SPEn is false, SP will not be updated, even if RegWEn is true.

2 A

� C

2 D

2 B

Exam generated for cs61c@berkeley.edu 22

iii. (2.0 pt) Which combination of the following circuits will correctly implement the “save to the stack”
operation?

Memory Choices

2 F

� G

2 H

2 B

� D

2 E

2 C

2 A

Exam generated for cs61c@berkeley.edu 23

6. Cache and MOESI

Consider a computer which has 2 processors, each with their own cache. Both have the same design: A 128 B
cache size, 2-way set associative, 4 ints per block, write-back, and write-allocate with LRU replacement. Each
cache takes in 20-bit addresses. Assume that ints are 4 bytes, and we are using the MOESI cache-coherence
protocol.

(a) (0.25 pt) The 20-bit addresses are Virtual Addresses

 False

True

(b) i. (0.25 pt) How many Offset bits?

4

4 bits

ii. (0.25 pt) How many Index bits?

2

128 / 16 = 8 blocks in the cache / 2 ways = 4 sets, so 2 bits for index

iii. (0.25 pt) How many Tag bits?

14

20 - 2 - 4 = 14 bits

Exam generated for cs61c@berkeley.edu 24

(c) We decide to parallelize a for loop across these 2 processors, but instead of using OpenMP, we have each
thread do a strided memory access, where processor 0 handles even indices, while processor 1 handles
odd indices. However, the memory accesses are perfectly interleaved, i.e. the order of array
accesses are still A[0], A[1], A[2], A[3]. . .

define ARR_LEN 32
// A is located at address 0xA0000
int A[ARR_LEN];

// Processor 0’s loop
for (int i = 0; i < ARR_LEN; i += 2) {

A[i] += i
}

// Processor 1’s loop
for (int j = 1; j < ARR_LEN; j += 2) {

A[j] += j
}

For each memory access below,

i. Classify it as a Hit or Miss. Snooping another cache for data is considered a coherency Miss.
ii. Since we are working in a multiprocessor system, classify the state of the block that the data accessed

resides in from the specified processors perspective.

i. A[0] Read

A. (0.25 pt)

 Miss

Hit

B. (0.25 pt)

State from proc 0’s point of view.

S

 E

M

O

I

Exam generated for cs61c@berkeley.edu 25

ii. A[0] Write

A. (0.25 pt)

 Hit

Miss

B. (0.25 pt)

State from proc 0’s point of view.

S

I

O

E

 M

Exam generated for cs61c@berkeley.edu 26

iii. A[1] Read

A. (0.25 pt)

 Miss

Hit

B. (0.25 pt)

State from proc 0’s point of view.

M

E

 O

S

I

Exam generated for cs61c@berkeley.edu 27

iv. A[1] Write

A. (0.25 pt)

 Hit

Miss

B. (0.25 pt)

State from proc 1’s point of view.

I

S

E

 M

O

Exam generated for cs61c@berkeley.edu 28

v. A[2] Read

A. (0.25 pt)

Hit

 Miss

B. (0.25 pt)

State from proc 1’s point of view.

E

S

M

 O

I

Exam generated for cs61c@berkeley.edu 29

vi. A[2] Write

A. (0.25 pt)

Miss

 Hit

B. (0.25 pt)

State from proc 0’s point of view.

O

E

I

S

 M

Exam generated for cs61c@berkeley.edu 30

vii. A[3] Read

A. (0.25 pt)

 Miss

Hit

B. (0.25 pt)

State from proc 0’s point of view.

S

 O

I

E

M

Exam generated for cs61c@berkeley.edu 31

viii. A[3] Write

A. (0.25 pt)

Miss

 Hit

B. (0.25 pt)

State from proc 1’s point of view.

I

S

O

 M

E

Exam generated for cs61c@berkeley.edu 32

(d) (2.0 pt) What is the overall hit rate? Leave your answer as a fully simplified fraction.

1/2

The pattern above continues and repeats for all 8 blocks, giving us a 50% HR.

(e) (2.0 pt) What fraction of misses are coherency misses? Leave your answer as a fully simplified fraction.

3/4

Out of the 4 misses in each “access pattern block”, 1 is compulsory, while the other 3 are coherency misses,
so 75% of the overall misses.

(f) (1.0 pt) In total, how many times did we need to go to main memory to write-back?

0

As the array fits perfectly into the cache, we never need to evict an block and write-back, so 0.

(g) (2.0 pt) We want to avoid all the coherency misses, so we look to see if we can rewrite our code to
optimize for cache performance. Which of the following methods will lead to a higher HR than that from
the interleaved accesses?

2 None of the other options

� Letting processor 0 start and finish, then processor 1 starts and finishes

� Letting processor 1 start and finish, then processor 0 starts and finishes

Both of these approaches would be better, since then there would be no coherency misses during the first
processor’s execution (load in the block, then hit on the other 3 WRW, so 75% HR). Then, the second
processor would begin, but instead of compulsory missing, just coherency miss, but get the same HR
pattern of MHHH for each block.

Exam generated for cs61c@berkeley.edu 33

7. CALL

Suppose we have compiled some C code using the Hilfinger-Approved(TM) CS61Compiler, which will compile,
assemble, and link the files max.c and jie.c,among others, to create a wonderful executable. After the code
has been assembled to RISC-V we have the following labels across all files: sean, jenny, stephan, philspel,
poggers, crossroads, and segfault. Assume no two files define the same label, though each file interacts with
every label, either via reference or definition.

Note: segment refers to a directive in any assembly file, e.g. .data or .text

The CS 61Compiler begins to fill out the relocation table on the first pass of assembling max.s, which defines or
references all of the labels above. This is its relocation table after the first pass:

label address

sean ????
stephan ????
jenny ????
segfault ????
philspel ????

(a) (2.0 pt) sean, stephan, jenny, segfault, and philspel all show up in the relocation table after the
first pass through. Which of the following must be true? Select all that apply.

� They are referenced before they are defined.

2 They belong in the .text segment.

2 They are external references.

2 None of the other options

2 They are referenced before poggers and crossroads.

(b) (2.0 pt) After the first pass through, poggers and crossroads don’t show up in the relocation table.
What does this imply about the two function labels? Select all that apply.

2 They are .globals.

2 None of the other options

2 They are both referenced before they are defined.

� After the assembler is finished, they are in the same segment.

(c) (2.0 pt) After the second pass by the assembler, we see that philspel is no longer in the relocation table.
Which of the following is true about philspel? Select all that apply.

� philspel is in the .text segment of max.s

2 None of the other options

� The address for philspel was resolved.

2 philspel is in the .text segment of jie.s

2 philspel is an external reference.

(d) (2.0 pt) After assembling jie.s to jie.o we have the following symbol table for jie.o. In linking max.o
and jie.o we get dan.out. Which of the following could be true about ‘sean’ and ‘jenny’ after linking?
Select all that apply.

Exam generated for cs61c@berkeley.edu 34

label address

sean 0x061c
jenny 0x1620

� They are in the same segment.

� sean and jenny will have the same byte difference after linking as it did in jie.o.

2 They are in different files.

� sean and jenny are in different sections of jie.s.

2 None of the other options

Exam generated for cs61c@berkeley.edu 35

8. DLP

In many applications, we wish to not only find the maximum element of an array, but the index of the maximum
element, or the argmax. To do this quickly, we decide to utilize Data Level Parallelism. The following function,
argmax, takes in an array, arr, and its length, n, and returns the index of the maximum value. If there exist
multiple indices which contain the same maximum value, the function returns the first of these indices.

Use the provided “pseudo” SIMD intrinsics to fill in the function so it behaves as expected. The SIMD intrinsics
operate on vec structs which represent SIMD vectors that contain 4 packed integers (exactly like Intel’s __m128i
structs). You may not need all lines.

SIMD Instructions:

vec sum_epi32 (vec a, vec b)
// returns a + b

vec and_epi32 (vec a, vec b)
// returns a & b

vec set_epi32 (int a)
// return SIMD vector with all entries set to a

vec load_epi32 (int *a)
// return SIMD vector with entries a[0], a[1], a[2], and a[3] respectively

int reducemax_epi32 (vec a)
// return the value of the maximum int in vector a

vec maskeq_epi32 (vec a, int b)
// return mask vector with 0xFFFFFFFF for indices where a is equal to b and 0 otherwise

int firstv_epi32 (vec a)
// return index of first entry with lowest bit set to 1

int argmax(int *arr, int n) {
int curr, index = 0, running_max = -2147483648; // -2^31
vec temp;

/* Your Code Here */

return index;
}

(a) (10.0 pt) /* Your Code Here */

for (int i = 0; i < n / 4 * 4; i += 4) {
temp = load_epi32(arr + i);
curr = reducemax_epi32(temp);
if (curr > running_max):

temp = maskeq_epi32(temp, curr);
index = i + firstv_epi32(temp);
running_max = curr;

}
for (int i = n / 4 * 4; i < n; i += 1) {

if (arr[i] > running_max) {
running_max = arr[i];
index = i;

}
}

Exam generated for cs61c@berkeley.edu 36

9. ECC, RAID

(a) (0.5 pt) If we want to tolerate 1 disk failure, which version(s) of RAID should we use?

� RAID 5

2 RAID 0

2 None of the other options

� RAID 1

� RAID 4

(b) (0.5 pt) Which version of RAID is fastest for small random writes?

2 None of the other options

� RAID 0

2 RAID 1

2 RAID 5

2 RAID 4

Parity Bits

(c) i. (2.0 pt) What is the minimum Hamming distance necessary to allow for Single Error Detection
and Single Error Correction?

3

ii. (2.0 pt) How many bits of data can we cover if we have 7 parity bits?

120

27 − 7− 1 = 120

iii. Consider the following codeword we wish to send: 0b10110100.

A. (3.0 pt) What is the Hamming ECC we should send over to ensure that we can detect and
correct a 1-bit error?

0b001001110100

p1: 1, 0, 1, 0, -> 0 p2: 1, 1, 1, 1, 0 -> 0 p4: 0, 1, 1, 0 -> 0 p8: 0, 1, 0, 0, -> 1

ECC is 0b001001110100

Exam generated for cs61c@berkeley.edu 37

B. (2.0 pt) We receive the word, but notice something is off. We are unable to see the contents
of the bits, but we are told that only the parity check for p1 failed. Given this information,
which bit position holds the error? (Remember that indices begin at 1 for ECC)

1

Since only p1 had an odd parity, the error must have been in the only bit who is covered solely
by p1: bit 1.

Exam generated for cs61c@berkeley.edu 38

10. RISC-V Coding

We wish to implement a function, reverse_str, that will take in a pointer to a string, its length, and reverse it.
Assume that the argument registers, a0, a1, hold the pointer to and length of the string, respectively. Complete
the following code skeleton to implement this function. You must use commas to separate arguments in your
code, e.g. add x0, x0, x0.

Reverse_str:

This part saves all the required registers you will use.
HIDDEN CODE

mv s0, a0 # memory address
mv s1, a1 # strlen
addi t0, x0, 0 # iteration

Loop:

YOUR CODE HERE
retrieve left and right letters

switch chars

iterate if necessary

END YOUR CODE HERE

This part restores all of the registers which were used.
HIDDEN CODE
ret

(a) (10.0 pt)

retrieve left and right letters
add t1, s0, t0 # t1 is moving pointer from left (base + offset/iteration)
lb t2 0(t1) # t2 contains char from left
sub t3, s1, t0 # imm needs to be s1 - t0
addi t3, t3, -1 # since strlen indexes out of string
add t4, s0, t3 # t4 is moving pointer from right (base + strlen -
offset/iteration - 1)
lb t5 0(t4) # t5 contains char from right
switch chars
sb t2, 0(t4)
sb t5, 0(t1)
iterate if necessary
addi t0, t0, 1 # update iter
srli s8, s1, 1
bne t0, s8, Loop
mv a0, s0 # not necessary

Exam generated for cs61c@berkeley.edu 39

11. Number Rep

(a) Translate the following numbers to their specified bases and representations. Do not include leading 0s,
and remember to include the appropriate prefix for hex and binary, but no other base.

1335

i. (1.5 pt) Decimal

43

3 + 15 + 25 = 43

ii. (1.5 pt) Base 3 unsigned

1121

(1 ∗ 33) + (1 ∗ 32) + (2 ∗ 31) + (1 ∗ 30) = 27 + 9 + 6 + 1→ 1121

Exam generated for cs61c@berkeley.edu 40

(b) We want to use a new floating point format with base 3. Consider an 8 digit “minifloat” S EEE MMMM
(1 sign trit, 3 exponent trits, 4 mantissa trits). All other properties of IEEE754 apply (bias, denormalized
numbers,∞, NaNs, etc), which includes normalized numbers having an implicit leading 1 and denormalized
numbers having an implicit leading 0. The sign digit only takes values of 0 and 1.

Normalized: (−1)sign ∗ 3exponent+bias ∗ 1.mantissa

Denormalized: (−1)sign ∗ 3exponent+bias+1 ∗ 0.mantissa

Assume we have a bias of -10.

i. (2.5 pt) Represent 33.3 with our new floating point format.

01110201

33.3 = 1 ∗ 33 + 2 ∗ 3 + 1
3 → 1020.1 = 1.0201 ∗ 33 Sign : 0

Exp digits: 3− (−10) = 1→ 1 ∗ 32 + 1 ∗ 31 + 1 ∗ 30 = 111

Mantissa: 0201

Together: 0 111 0201

ii. (2.5 pt) What is the decimal value of the largest positive normalized float? Express your answer in
terms of powers of 3 from largest to smallest. Ex: 2*3ˆ8+1*3ˆ2+2*3ˆ0. Leave out the zero bits and
do NOT add spaces. Do not add parenthses for powers!

1*3ˆ15+2*3ˆ14+2*3ˆ13+2*3ˆ12

Sign : 0

exp digits: 221 = 2 ∗ 32 + 2 ∗ 3 + 1 = 25→ 25− 10 = 15

Mantissa: 2222

315 ∗ (1.22223) = 1 ∗ 315 + 2 ∗ 314 + 2 ∗ 313 + 2 ∗ 312 = 31355019

Exam generated for cs61c@berkeley.edu 41

12. I/O

We wish to communicate with an I/O device using Memory Mapped I/O. To do so, we have set aside a portion
of our address space to communicate with this device, beginning at address 0xA0000000. Below is a table
describing all the special addresses (control/data registers) and the purpose of each value that lives there.
Assume that our device has 32 pins for I/O which can each hold 16 bits of data, sizeof(uint16_t) == 2,
sizeof(uint32_t) == 4, and sizeof(uint64_t) == 8:

Address Field Name Purpose

0xA0000100 READY_IN The i-th bit indicates whether or
not the device has a value at pin i
that should be read by the
computer via a 1 or 0, respectively

0xA0000108 READY_OUT The i-th bit indicates whether or
not the computer has a value for
pin i that should be read by the
device via a 1 or 0, respectively

0xA0000200 DATA_IN The input data from the pin
indicated by READY_IN

0xA0000202 DATA_OUT The output data to the pin
indicated by READY_OUT

(a) Fill in the following C code to complete the implementation of a struct that will “cover” these addresses
and allow us to manage this device without hard-coding all the addresses. For example, we should be able
to access READY_IN by using IO_device->READY_IN. Assume that memory will be word-aligned, but
not padded. You should be using all provided lines and can only have one semicolon per line:

typedef struct {
uint32_t READY_IN;
uint32_t padding1[<**CODE INPUT 1**>];
<**CODE INPUT 2**>;
uint32_t padding2[<**CODE INPUT 3**>];
<**CODE INPUT 4**>
uint16_t DATA_OUT;

} IO_device;

i. (1.0 pt) <**CODE INPUT 1**>

1

0x108 - 0x100 = 8 bytes, take away 4 for IN_READY, so we are left with 8 - 4 = 4 = 1 uint32_t of
padding

ii. (0.5 pt) <**CODE INPUT 2**>

uint32_t READY_OUT;

iii. (1.0 pt) <**CODE INPUT 3**>

61

0x200 - 0x100 = 256 bytes, take away 4 for IN_READY, 4 for padding1, 4 for OUT_READY, so
we are left with 256 - 12 = 244 / 4 = 61 uint32_t of padding

Exam generated for cs61c@berkeley.edu 42

iv. (0.5 pt) <**CODE INPUT 4**>

uint16_t DATA_IN;

Exam generated for cs61c@berkeley.edu 43

(b) Now that you have this struct at your disposal, use it to complete the following functions that will allow
you to communicate with your device. Assume that memory has been initialized to random data.

define base_io_addr 0xA0000000
IO_device* IO_device_ptr = <**CODE INPUT 1**>;

uint16_t read_from_pin(int pin) {
Check if pin has something to be read, and if so, read this value. Else, return 0
<**CODE INPUT 2**>

}

void write_to_pin(int pin, uint16_t data) {
Notify the device that we have something to write, and then write it.
Note that READY_OUT can only have one bit active at a time,
but our device handles resetting this value every time it reads.
<**CODE INPUT 3**>

}

i. (1.0 pt) <**CODE INPUT 1**>

base_io_addr + 0x100

ii. (3.0 pt) <**CODE INPUT 2**>

if (IO_device_ptr->READY_IN >> pin) & 1) {
return IO_device_ptr->DATA_IN;

}
return 0;

iii. (5.0 pt) <**CODE INPUT 3**>

IO_device_ptr->READY_OUT = IO_device_ptr->READY_OUT | (1 << pin);
IO_device_ptr->DATA_OUT = data;

Exam generated for cs61c@berkeley.edu 44

13. RISC-V Instruction Format

You are working on a new chip for an embedded application, and want to create a new ISA. Fed up with the
different RISC-V instruction types, you decide to include only one, universal type - the X-type instruction.

Say we wish to include the following instructions:

0. add rd1, rs1, rs2
1. and rd1, rs1, rs2
2. lw rd1, offset1 (rs1)
3. sw rs2, offset1 (rs1)
4. addi rd1, rs1, imm1
5. beq rs1, rs2, offset1
6. lui rd1, offset1
7. jal rd1, imm
8. stw rs3, offset1, offset2 (rs1)

The new stw instruction stores the contents of rs3 into both rs1 + offset1 and rs1 + offset2. The RTL is:

Mem(R[rs1] + offset1)←R[rs3] AND Mem(R[rs1] + offset2)←R[rs3]

(a) (2.0 pt) You want to do away with the funct3 and funct7 fields and only use an opcode. If we only wish
to support the instructions listed above, what is the minimum number of bits the opcode field can be?

4

4 bits

We have 9 instructions, so we need 4 bits to represent them.

(b) (3.0 pt) We want to be able to jump up to 64 KiB in either direction with a single instruction. How
many bits are necessary to encode an immediate that would allow us to do this? Assume that, just like
RV32, the least significant bit is an implicit 0 and is not stored in the instruction.

16

16 bits

64 KiB = 216 B. Jal is the only jump instruction given, so it will determine the size of the immediate
field. Recall that, in RISC-V, the immediates encoded in instructions work in units of half-instructions, so
jumping up to 64 KiB in either direction is the same as saying we want to jump up to 2ˆ15 half instructions
in both directions. Since immediates are signed, we need 16 bits to represent this range of values.

(c) (2.0 pt) Regardless of your previous answers, you finally decide on the instruction format below. You’ve
added some fields to account for new instructions you might want to include later on. The opcode for
each instruction is the same as the list index given at the beginning of this problem (e.g. sw
has opcode 3).

imm2 imm1 rs3 rs2 rs1 rd2 rd1 opcode

This instruction format is quite long, so we decide to work on a 64-bit machine. Each immediate field is
11 bits, and the opcode is 7 bits. What is the maximum number of registers we can have?

128

128 registers

2*11-bit immediates + 7-bit opcode = 29 bits. 64 - 29 = 35, so we have 35 bits left over for the registers.

Exam generated for cs61c@berkeley.edu 45

There are 5 registers, so we can use 7 bits per register. 27 = 128 registers.

(d) (3.0 pt) Realizing supplies have run low due to COVID-19, you switch to a 32-bit machine, and finalize
your instruction format to have 4 bits for each of the immediate fields, 4 bits for each register, and 4 bits
for the opcode.

Convert the instruction stw x8, 0, 4 (x5) into machine code. Leave your answer in binary (don’t forget
the prefix!). If a field is not used, fill in the field with ‘x’s.

010000001000xxxx0101xxxxxxxx1000

Rs3 is x8 = 0b1000. Rs1 is x5 = 0b0101. Imm1 = 0b0000. Imm2 = 0b0100. So, the final instruction is
0100 | 0000 | 1000 | xxxx | 0101 | xxxx | xxxx | 1000.

Exam generated for cs61c@berkeley.edu 46

No more questions.

