
CS 61C Great Ideas in Computer Architecture
Summer 2020 Midterm 1

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address cs61c@berkeley.edu. If this is not your email address,
notify course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends,
as some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for cs61c@berkeley.edu 2

Preliminaries

Please complete and submit these questions before the exam starts.

(a) What is your full name?

Solutions

(b) What is your student ID number?

dQw4w9WgXcQ (This is a YouTube video)

(c) If an answer requires hex input, make sure you only use capitalized letters! For example, 0xDEADBEEF
instead of 0xdeadbeef. You will be graded incorrectly otherwise! Please always add the hex (0x) and
binary (0b) prefix to your answers or you will receive 0 points. For all other bases, do not add the suffix or
prefixes.

Some of the questions may use images to describe a problem. If the image is too small, you can click and
drag the image to a new tab to see the full image. You can also right click the image and download it or
copy its address to view it better. You can use the image below to try this. You can also click the star by
the question if you would like to go back to it (it will show up on the side bar). In addition, you are able
see a check mark for questions you have fully entered in the sidebar. Questions will auto submit about 5
seconds after you click off of them, though we still recommend you click the save button.

Good luck!

Exam generated for cs61c@berkeley.edu 3

1. A Generic C Question

In object-oriented programming languages such as Java, the concept of a Generic data type exists. This means
that, in a class definition of an object, we can leave the data types of chosen variables as an “unknown” type
that is instead expected to be provided during instantiation of the object. In this problem, we will implement
generics in C for a LinkedList. Remember, though, that we do not have objects to instantiate in C, so instead
our GenericLinkedList should simply be versatile enough to accept any given data type without error or compiler
warnings. A user should not need to do any form of explicit or implicit casting when working
with this new data type, except for when dealing with the void* pointer returned by the alloc
functions. For the following, assume we have included the correct includes.

(a) (3.0 pt) You may assume that our GenericLinkedList only has to account for 3 data type choices: char,
uint16_t, uint32_t, where the # in uint#_t represents the number of bits the data type contains. It
also supports structs and unions. In addition, we are working on a 32-bit addressable memory space,
structs are word-aligned and padded appropriately, and all calls to malloc(), calloc(), and realloc()
succeed. Fill in the skeleton for a GenericLink. Your solution must use the minimum amount of
space possible. A sub-optimal solution may not receive credit. You may not use void* in
your approach.

typedef struct {
<YOUR CODE HERE>

} GenericLink;

(b) (1.0 pt) What does sizeof(GenericLink) evaluate to?

(c) I now want to store a String as a GenericLinkedList, i.e. each link should hold one char of the string, with
the links ordered the same way as the chars in the string. You may assume that the length of the string
is > 1. You do not need to worry about storing the null terminator. Please fill in the following function
implementations:

Exam generated for cs61c@berkeley.edu 4

i. (2.0 pt)

GenericLink* store_char(char c) {
/* store_char takes in a char, and returns a

pointer to a link containing this char */

<YOUR CODE HERE>
}

ii. (6.0 pt)

GenericLink* store_string(char* str) {
/* store_string takes in a string, and returns a

pointer to the “head” of the GenericLinkedList
holding the string, i.e. the link containing the first char*/

<YOUR CODE HERE>
}

Exam generated for cs61c@berkeley.edu 5

2. Doubly Linked Trouble!

For this problem, assume all pointers and integers are four bytes and all characters are one byte. Consider
the following C code (all the necessary #include directives are omitted). C structs are properly aligned in
memory and all calls to malloc succeed. For all of these questions, assume we are analyzing them
right before main returns.

typedef struct node {
void *data;
struct node *nxt;
struct node *prv;

} node;

void push_back(node *list, void *data) {
node *n = (node *) malloc(sizeof(node));
n->data = data; n->nxt = list; n->prv = list->prv;
list->prv->nxt = n; list->prv = n;

}

int main() {
char *r = "CS 61C Rocks!";
char s[] = "CS 61C Sucks!";
node sentinel; sentinel.nxt = &sentinel; sentinel.prv = &sentinel;
push_back(&sentinel, r);
push_back(&sentinel, s);
push_back(&sentinel, &sentinel);
push_back(&sentinel, calloc(sizeof(s) + 1, sizeof(char)));

}

(a) Each of the following evaluate to an address in memory. In other words, they “point” somewhere. Where
in memory do they point?

i. (0.75 pt) &sentinel

Heap

Stack

Static

Code

ii. (0.75 pt) sentinel.nxt->nxt->data

Heap

Static

Stack

Code

iii. (0.75 pt) &push_back

Stack

Code

Heap

Static

Exam generated for cs61c@berkeley.edu 6

iv. (0.75 pt) sentinel.nxt->data

Stack

Heap

Static

Code

v. (0.75 pt) sentinel.prv->prv->data

Static

Heap

Stack

Code

vi. (0.75 pt) sentinel.prv->data

Static

Heap

Stack

Code

vii. (0.75 pt) sentinel.prv->prv

Code

Heap

Stack

Static

Exam generated for cs61c@berkeley.edu 7

(b) (3.0 pt) How many bytes of memory are allocated but not free()d by this program, if any? (assuming
we have not called free_list) (Leave your answers as an integer. Do not include the units, we are telling
you it’s bytes after all!)

(c) (1.75 pt) Say we had this free function:

void free_list(node *n) {
if (n == NULL) return;
node *c = n->nxt;
for (; c != n;){
node *tmp = c; c = c->nxt;
free(tmp);

}
}

Given this free function, if we called free_list(&sentinel) after all the code in main is executed, this
program would have well defined behavior.

False

True

Exam generated for cs61c@berkeley.edu 8

3. RISC-V!

For each of the following, write a simple RISC-V function with one argument. Follow calling convention,
use register mnemonic names (e.g., refer to t0 rather than x6), and add commas and a single space between
registers/arguments (e.g. addi a0, a1, 2). If you do not follow this, you may be misgraded!

(a) Leave your answers fully simplified as integers. Do not leave powers of 2 in your answer! Feel free
to use a calculator to simplify your answer.

You want to build a mini RISC-V instruction architecture that only supports 16 registers, which allows the
length of the register fields to be shortened. Assuming that you use the extra bits to extend the immediate
field, what is the range of half-word instructions that can be reached using a branch instruction in this
new format? [<lower bound>, <upper bound>]

i. (0.75 pt) <lower bound>

ii. (0.75 pt) <upper bound>

Exam generated for cs61c@berkeley.edu 9

(b) Find the length of a null-terminated string in bytes. The function should accept a pointer to a null-
terminated string and return an integer. Your solution must be recursive!

strlen:
__<CODE INPUT 1>__
beq t0, zero, basecase
__<CODE INPUT 2>__
__<CODE INPUT 3>__
__<CODE INPUT 4>__
jal strlen
__<CODE INPUT 5>__
__<CODE INPUT 6>__
__<CODE INPUT 7>__
ret

basecase:
__<CODE INPUT 8>__
ret

Fill in the following:

i. (0.75 pt) <CODE INPUT 1>

ii. (0.75 pt) <CODE INPUT 2>

iii. (0.75 pt) <CODE INPUT 3>

iv. (0.75 pt) <CODE INPUT 4>

v. (0.75 pt) <CODE INPUT 5>

vi. (0.75 pt) <CODE INPUT 6>

Exam generated for cs61c@berkeley.edu 10

vii. (0.75 pt) <CODE INPUT 7>

viii. (0.75 pt) <CODE INPUT 8>

Exam generated for cs61c@berkeley.edu 11

(c) Arithmetically negate a Two’s Complement 32-bit integer without using the sub, mul or pseudo instructions.

negate:
__<CODE INPUT 1>__
__<CODE INPUT 2>__
ret

Fill in the following:

i. (0.75 pt) <CODE INPUT 1>

ii. (0.75 pt) <CODE INPUT 2>

Exam generated for cs61c@berkeley.edu 12

(d) i. (1.0 pt)

auipc t0, 0xABCDE # Assume this instruction is at 0x100
addi t0, t0, 0xABC

Write down the value of t0 in hex. Reminder: include the prefix in your answer!

ii. (2.0 pt)

li t0, 0xABCDEFAD
sw t0, 0(s0)
lb t0, 0(s0)

Write down the value of t0 in hex. Assume big-endianness. Reminder: include the prefix in your
answer!

Exam generated for cs61c@berkeley.edu 13

4. CALL!

Consider the following assembly code (Note these are the addresses the assembler give each of the instructions):

Address	Assembly
0x0C | add t0, x0, x0
0x10 | addi t1, x0, 4
0x14 | loop: beq t0, t1, end
0x18 | add a0, a0, t0
0x1C | jal ra, square
0x20 | jal ra, printf
0x24 | n: addi t0, t0, 1
0x28 | j loop
0x2C | end: ecall

|
0x30 | square: mul a0, a0, a0
0x34 | ret

(a) (1.0 pt) A poorly written but correct assembler can seriously slow down the speed of the compiled
program.

False

True

Assuming an isolated assembler, create the symbol table after the first pass (top to down). If a line of the
symbol table is not used, enter N/A.

(b) i. A. (0.25 pt) First label:

B. (0.25 pt) First address:

Exam generated for cs61c@berkeley.edu 14

ii. A. (0.25 pt) Second label:

B. (0.25 pt) Second address:

Exam generated for cs61c@berkeley.edu 15

iii. A. (0.25 pt) Third label:

B. (0.25 pt) Third address:

Exam generated for cs61c@berkeley.edu 16

iv. A. (0.25 pt) Fourth label:

B. (0.25 pt) Fourth address:

Exam generated for cs61c@berkeley.edu 17

(c) (1.0 pt) No address needs to be resolved at the linker stage.

False

True

(d) (4.0 pt) Translate the instruction at address 0x1C into machine code (in hex).

(e) (0.5 pt) This code is the input of. . .

Loader

Linker

Compiler

None of the other options

Assembler

(f) (1.5 pt) Apple recently announced that it is switching from Intel processors to ARM ones, which have a
different ISA (a RISC one!). To ensure that old programs can still run on these new devices, which stage(s)
of the CALL stack do they need to re-run to create the executable binaries?

2 Loader

2 Linker

2 Compiler

2 Assembler

2 None of the other options

(g) (2.0 pt) After the first pass of a top to bottom assembler, which of the following instructions do NOT
have their addresses fully resolved?

2 jal ra, printf

2 None of the other options

2 beq t0, t1, end

2 jal ra, square

2 j loop

Exam generated for cs61c@berkeley.edu 18

5. Number Fun

(a) Does the resulting operation overflow given 6-bit, Two’s Complement numbers?

i. (0.5 pt) 0b011111 + 0b000001

Correct

Overflow

ii. (0.5 pt) 0b001111 + 0b001111

Overflow

Correct

iii. (0.5 pt) 0b010001 + 0b001111

Overflow

Correct

Exam generated for cs61c@berkeley.edu 19

(b) Please answer the questions below, assume we are working with n bits.

i. A. (1.0 pt) It is possible to represent the same range of numbers with biased and 2’s complement.

True

False

B. (1.0 pt) It is possible to represent the same range of numbers with 1’s complement and bias.

False

True

Exam generated for cs61c@berkeley.edu 20

ii. (1.0 pt)

2 + 2 can equal fish under the correct representation.

False

True

Exam generated for cs61c@berkeley.edu 21

(c) Select all which is true for the following statements.

i. (1.0 pt) Which of the following interpretations allows for multiple different bit sequences to map to
the same underlying value?

2 Sign and Magnitude

2 One’s Complement

2 Two’s Complement

2 Floating Point

2 Biased (for at least 1 choice of bias)

2 Unsigned

2 None of the other options

ii. (1.0 pt) Which of the following interpretations allows us to deduce the sign just by looking at the
most significant bit? (Ignore 0)

2 Two’s Complement

2 One’s Complement

2 Floating Point

2 Biased (for at least 1 choice of bias)

2 None of the other options

2 Sign and Magnitude

Exam generated for cs61c@berkeley.edu 22

(d) (1.0 pt)

How many numbers are written the same way in 32-bit 2’s complement and IEEE-754 single-precision
floating point (32 bit)?

(e) Please fill out the following table. Write exactly “N/A” if the conversion is not possible. Some entries
have already been filled out for you. You may assume all binary numbers are 8 bits. If you are writing
your answer in hex or binary, make sure to include its prefix; you will not get credit if you forget! Also,
do not include the suffix for any representation, i.e. for decimal, base 4, and base 8, just put in the raw
number. (For example, if the answer for base 4 is 32104, just enter 3210). Please include all necessary
leading zeros for any base other than decimal. You must fully simplify your answers.

Convert 0x3C (Two’s Complement) to. . .

i. (0.5 pt) Decimal

ii. (0.5 pt) Binary (Two’s Complement)

iii. (0.5 pt) Base 4 (Two’s Complement)

iv. (0.5 pt) Base 8 (Two’s Complement)

v. (0.5 pt)

Binary (Biased w/ added bias of -127)

Exam generated for cs61c@berkeley.edu 23

(f) i. (1.0 pt) For this question, assume that we are using 8-bit numbers! Make sure you fully simplify your
answers. Note these problems are in numerical terms, not in terms of magnitude.

What is the distance between the largest number in 2’s complement and the largest number in Sign
and Magnitude?

ii. (1.0 pt) What is the distance between the largest number in 2’s complement and the largest number
in unsigned?

Exam generated for cs61c@berkeley.edu 24

6. Don’t Float Away!

Suppose we use an 8-bit floating point format similar to IEEE-754, with 1 sign bit, 3 exponent bits, and 4
significand bits. Assume the bias is -3 and we add the bias. For ALL parts of this question, express your answer
a) in decimal, and b) in hex. Make sure you add the prefix to your hex value, fully simplify your answers, and
do NOT leave them as fractions. Feel free to plug your fraction into Google to turn it into a decimal value. For
all answers, write the exact decimal value, not a rounded one. All solutions have a finite number of decimal
digits without rounding!

Quick reminder about intervals: (and) are exclusive while [and] are inclusive.

(a) i. (1.5 pt)

What’s the gap (aka absolute value of the difference) between the smallest positive non-zero denorm
and smallest positive non-zero norm? (Answer in decimal)

ii. (1.5 pt)

How many Floating Point numbers are in the interval of (21, 23)? (Answer in decimal)

iii. (1.0 pt)

How many positive non-zero denormalized Floating Point numbers can we represent? (Answer in
decimal)

Exam generated for cs61c@berkeley.edu 25

(b) Find the smallest positive non-zero denormalized number represented in this new format.

i. (1.0 pt) Decimal:

ii. (1.0 pt) Hex:

Exam generated for cs61c@berkeley.edu 26

(c) Give the nearest representation of π (≈ 3.14159. . .).

i. (3.0 pt) Decimal:

ii. (3.0 pt) Hex (using our floating point representation):

Exam generated for cs61c@berkeley.edu 27

No more questions.

