
Wawrzynek, Weaver
Fall 2021 CS 61C Final

Print your name: ,
(last) (first)

Print your student ID:

Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I am aware
of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will be
reported to the Center for Student Conduct and may further result in, at minimum, negative points on
the exam and a corresponding notch on Nick’s Stanley Fubar demolition tool.

Sign your name:

You have 170 minutes. There are 9 questions of varying credit (100 points total).

For questions with circular bubbles, you may select only one choice.

Unselected option (completely unfilled)

Only one selected option (completely filled)

For questions with square checkboxes, you may select one or more choices.

You can select

multiple squares (completely filled).

Anything you write that you cross out will not be graded. Anything you write outside the answer boxes
will not be graded.

If an answer requires hex input, make sure you only use capitalized letters! For example, 0xDEADBEEF
instead of 0xdeadbeef. Please include hex (0x) or binary (0b) prefixes in your answers. For all other bases,
do not add the suffix or prefixes.

Page 1 of 19

This page intentionally left with only one sentence.

Final Page 2 of 19 CS 61C – Fall 2021

Q1 Potpourri (12 points)

Q1.1 (1 point) True or False: The assembler translates code from a human-readable language (such
as C) to an assembly language (such as RISC-V assembly).

True False

Q1.2 (1 point) True or False: Jumps made to statically linked libraries are fully resolved in the linker.

True False

Q1.3 (1 point) True or False: The OS allows for higher reliability; if a program has a bug, only that
program will crash, instead of the entire system.

True False

Q1.4 (1 point) True or False: For high-performance network devices, polling tends to be used when
there’s a low data rate, while interrupts tend to be used when there’s a high data rate.

True False

Q1.5 (1 point) True or False: A multithreaded program is considered correct as long as at least one
order of the threads yields the correct answer, since we can force the scheduler to follow that
thread order.

True False

Q1.6 (1 point) True or False: It is cheaper to locate warehouse-scale computers in a cooler climate,
in order to reduce total energy consumption.

True False

We decide to set up 10 1 TiB disks together in a single RAID configuration. What is the effective amount
of storage we have if we decide to use:

Q1.7 (0.5 points) RAID 0?

TiB

Q1.8 (0.5 points) RAID 5?

TiB

Final Page 3 of 19 CS 61C – Fall 2021

Q1.9 (1 point) We run the following code on two threads.

1 in t y = 0 ;
2 in t x = 1 0 ;
3 #pragma omp p a r a l l e l
4 {
5 while (x >0)
6 {
7 y = y +1 ;
8 x = x −1 ;
9 }
10 }

What is the smallest possible value y can contain after this runs?

Q1.10 (1 point) Justin purchased his HP Pavilion 15t-cs300 laptop 1,000 days ago. During this time, it has
broken twice, and had to be repaired. Each repair took 10 days to complete, during which time the
laptop was unusable. What is the mean time to failure (MTTF) of Justin’s laptop, in days?

days

Q1.11 (1 point) What is the availability of Justin’s laptop?

Q1.12 (1 point) We’ve devised an error-correcting code which is able to fix 1 bit errors. If 0x61C is a valid
codeword, which of the following can NOT be a valid codeword, regardless of the error-correcting
scheme we have? Select all that apply.

0x71C

0x51C

0x70D

0xC16

0x16C

None of the above

Q1.13 (1 point) A program originally takes 1 second to run. We manage to parallelize 90% of our code to
be 10 times faster, at the cost of 10 milliseconds of overhead. How many times faster is our new
code?

Final Page 4 of 19 CS 61C – Fall 2021

Q2 Rounding Errop (14 points)
Note: we think Q2 and Q3 are harder questions. Feel free to skip them and come back later.

When working with floating point arithmetic, it is often the case that the exact result can’t be stored in
the floating point format. In this case, IEEE-754 defines the following rounding rule, which is commonly
used: Compute the value precisely, then round to the nearest floating point number. In the event that
the number is exactly halfway between two floating point numbers, round to the number with a least
significant bit of 0.

For example, if we had a 10-bit minifloat with 5 exponent bits (and standard bias of -15) and 4 significand
bits, the numbers 32 and 34 would be precisely representable (with no other representable numbers
between them). When evaluating 32 + 0.5 = 32.5, we would round down to 32, while evaluating 34 -
0.5 = 33.5 would round up to 34. The expression 16 +17 = 33 would round to 32, because 32’s binary
representation as a 10-bit float is 0b0 10100 0000 (which has a 0 as its least significant bit), and 34’s
binary representation as a 10-bit float is 0b0 10100 0001.

You may assume that for any two adjacent floating point numbers, one will have a LSB of 1 and the
other will have a LSB of 0. Further, you may assume for this question that you will not need to round to
infinity. Assume that any division in this question is float division (not integer division).

For the following questions, we will work with a 10-bit floating point representation that follows all
conventions of IEEE-754 (including NaNs, denorms, etc.) but with 5 exponent bits (and standard bias of
-15) and 4 significand bits.

What is the rounded values of the following (decimal) floating point numbers? You may express your
answer either as an decimal value, or as an odd integer multiplied by a power of 2:

Q2.1 (3.5 points) 37

Q2.2 (3.5 points) 1/3 (whose binary representation is 0b0.0101 0101. . .)

We compute the following infinite sums under this floating point system, using left-association for
addition (that is, a+b+c is evaluated in the order ((a+b)+c)), rounding after each addition. Eventually,
this converges to some value, after which any further iterations don’t change the sum. What is that
value? You may express your answer either as an decimal value, or as an odd integer multiplied by a
power of 2.

Q2.3 (3.5 points) 1 + (1/2) + (1/4) + . . .

Q2.4 (3.5 points) 2 + 2 + 2 + 2 + . . .

Final Page 5 of 19 CS 61C – Fall 2021

Q3 Wait, why was this RISC-y, anyway? (14 points)
Note: we think Q2 and Q3 are harder questions. Feel free to skip them and come back later.

Recall the definition of the function verifypassword:

The function verifypassword is defined as follows:

• Input: No register input; however, the function receives a string input from stdin.

• Output: a0 returns 1 if the input from stdin is exactly "secretpass", and 0 otherwise.

You have access to the following labels defined externally:

• Password: a pointer to a statically-stored string "secretpass"

• Get20chars: A function defined as follows:

– Input: a0 is a pointer to a buffer

– Effect: Reads characters from stdin, and fills the buffer pointed to by a0 with the read data,
null-terminating the string. Your code may assume that the input is at most 19 characters,
not including the null-terminator.

– Output: None

You are a hacker, and you’re currently trying to target the implementation of verifypassword pre-
sented on the midterm (copied below):

1 v e r i f yp a s swo rd :
2 add i sp , sp , −24 # Space for :
3 sw ra 2 0 (sp) # ra
4 mv a0 sp # 20− by te b u f f e r
5 j a l r a Ge t20cha r s
6 l a t 0 Password
7 mv t 1 sp
8 Loop :
9 l b t 2 0 (t 0)
10 l b t 3 0 (t 1)
11 bne t 2 t 3 F a i l
12 beq t 2 x0 Pas s
13 add i t 0 t 0 1
14 add i t 1 t 1 1
15 j Loop
16 Pas s :
17 add i a0 x0 1
18 j End
19 F a i l :
20 mv a0 x0
21 End :
22 lw ra 2 0 (sp)
23 add i sp sp 24
24 j r ra

Final Page 6 of 19 CS 61C – Fall 2021

During the course of your testing, you discovered an interesting fact: the function Get20Chars doesn’t
actually work as intended! Instead of truncating at the 20th character, Get20Chars continues to write
data until the first null terminator in its input. As before, verifypassword is located at 0x1000 and
Get20Chars is located at 0x0F00. Further, assume that the stack pointer is located at 0xBFFF F800 at
the start of verifypassword, our page size is 4 KiB, and that we are currently working on a little-endian
system.

Q3.1 (2 points) Our first step in exploiting this program is to find an input that changes the program
flow. Submit a string that, if inputted in stdin, will cause verifypassword to return to the
address 0xDEAD BEEF. You may use the syntax "A"*10 to denote a string consisting of 10 letter
"A"s, and "0xAB" to signify the ASCII character corresponding to byte value 0xAB (so "B" ==
"0x42"). For example, the answer "A"*15+"0x42 0x42"+"C" would correspond to the string
"AAAAAAAAAAAAAAABBC". (Hint: What gets changed if we write more than 20 characters?)

Q3.2 (2 points) Now that we can move the program counter to an arbitrary location, we would like to
jump to some RISC-V code that we’ve written. In order to do this, we decide to jump to the start of
the buffer on the stack. What is the maximum number of RISC-V standard instructions we can
inject into this buffer?

Final Page 7 of 19 CS 61C – Fall 2021

Q3.3 (4 points) Regardless of your previous answer, assume that we can put up to 5 instructions in the
buffer. Unfortunately, that’s not really enough instructions to do much. Instead, we decide to inject
code that lets us run longer programs, instead of only being limited to 5 instructions.

Complete the following 5-line code which does the above. You may use pseudoinstructions, as
long as they resolve to exactly one instruction. Each blank is worth 1 point.

Allocate a buffer of 256 bytes, which does not overlap with any data
we already are using (such as the instructions injected in part 1)

1: addi

Set the argument of Get20Chars to the start of the allocated buffer

2: mv sp

Set t1 so the next instruction jumps to Get20Chars

3: lui

4: jalr ra t1 -256 # Call Get20Chars

Jump to the start of the buffer

5:

Q3.4 (2 points) Translate the instruction jalr ra t1 -256 to its hexadecimal machine language en-
coding.

(Binary answers will not be awarded credit.)

0x
Q3.5 (2 points) Briefly explain in 10 words or fewer why we cannot use this instruction in our injected

code. (Hint: What would Get20Chars do if you tried to send this instruction as input?)

Final Page 8 of 19 CS 61C – Fall 2021

Q3.6 (2 points) Which of the following jump instructions can we use in our injected code? Don’t worry
about these lines not properly calling Get20Chars; we just want a valid RISC-V jump without
running into the problem identified in part 5 (Hint: use the conversion you already did in part 4).

Note that +3840 == 0x0000 0F00.

jalr ra t2 -256

jalr ra t0 16

ret

jalr s0 x0 3840

jalr x0 t1 -256

jalr s0 t1 -256

None of the above

Final Page 9 of 19 CS 61C – Fall 2021

Q4 Bit of a Delay (10 points)
Consider the following circuit. Assume that AND and OR gates have a delay of 8 ps (picoseconds), NOT
gates have a delay of 4 ps, and all registers have a setup time constraint of 6 ps and clock-to-Q delay of
3 ps. Assume all wires are ideal, i.e. they have zero delay.

Q4.1 (2 points) What is the largest combinational delay of all paths in this circuit, in picoseconds?

ps

Q4.2 (2 points) What is the smallest combinational delay of all paths in this circuit, in picoseconds?

ps

Q4.3 (2 points) What is the maximum possible hold time constraint for registers to function properly
in this circuit, in picoseconds?

ps

Q4.4 (2 points) What is the minimum allowable clock period for this circuit to function properly, in
picoseconds?

ps

Q4.5 (2 points) What is the maximum allowable clock frequency for this circuit to function properly, in
gigahertz?

GHz

Final Page 10 of 19 CS 61C – Fall 2021

Q5 Big Mac (10 points)
Below is the standard RISC-V CPU used in Project 3.

Q5.1 (4.5 points) For the instruction "lw", what are the control signals used? If a control signal doesn’t
matter, select "Don’t Care".

Select one option per box. Each box is worth 0.5 points.

PCSel PC+4 ALU Don’t Care

ImmSel I-type S-type B-type U-type

J-type Don’t Care

ASel PC rs1 Don’t Care

BSel Imm rs2 Don’t Care

RegWEn 1 0 Don’t Care

BrUn 1 0 Don’t Care

ALUSel add sll slt xor

srl or and mul

mulh sub sra bsel

Don’t Care

MemRW Read Write Don’t Care

WBSel ALU MEM PC+4 Don’t Care

Final Page 11 of 19 CS 61C – Fall 2021

The CPU is reproduced here for convenience.

Q5.2 (3 points) We want to add a new instruction mac (multiply and accumulate) to our CPU:

mac rd, rs1, rs2

Set rd to rd + (rs1 * rs2).

What changes would we need to make to our datapath in order for us to implement this instruction
(with as few changes as possible)? Select all that apply.

Add a new instruction format

Add a new immediate type for the ImmGen

Add a new rs3 input to RegFile

Add a new output to RegFile for a third register value

Add a new input to AMux and update the relevant selectors/control logic

Add a new input to BMux and update the relevant selectors/control logic

Add a new ALU input for a third register input

Add a new ALU operation and update the relevant selectors/control logic

Add a new input to WBMux and update the relevant selectors/control logic

None of the above

Final Page 12 of 19 CS 61C – Fall 2021

Q5.3 (2.5 points) Write a sequence of instructions that causes a hazard in a completely unoptimized
5-stage pipeline (no forwarding, no branch prediction, no synchronous read/writes, etc), but which
would not cause a hazard if all mac instructions were changed to mul instructions. If no such
sequence exists, write "Not Possible."

Final Page 13 of 19 CS 61C – Fall 2021

Q6 Boolean Code Golf (10 points)
For this question, consider each truth table of inputs and expected outputs. Write Boolean expressions
that, given the inputs W, Y, and Z, evaluate to the given output.

Your answer should consist of the following characters:

W, Y, Z The inputs
∼ NOT
| OR
& AND
∧ XOR
() Parentheses
1, 0 Constants

Each question specifies a par score, which is the target number of Boolean operations to use. For full
credit, your solution must use at most the par score number of operations (∼ , |, &, and ∧ each count
as one operation). Partial credit will be awarded for fully correct solutions that slightly exceed the par
score. The par score is not necessarily the minimum number of operations required.

Operator precedence will follow standard C operator precedence. We will NOT offer partial credit for
assuming incorrect operator precedence, so use parentheses when uncertain.

Q6.1 (2.5 points) Par 1 (1 Boolean operation)

W Y Z Out
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Final Page 14 of 19 CS 61C – Fall 2021

Q6.2 (2.5 points) Par 2

W Y Z Out
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Q6.3 (2.5 points) Par 3

An X is used to signify that either 1 or 0 can be outputted for the corresponding input.

W Y Z Out
0 0 0 X
0 0 1 X
0 1 0 0
0 1 1 1
1 0 0 X
1 0 1 X
1 1 0 1
1 1 1 0

Q6.4 (2.5 points) Par 4

W Y Z Out
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Final Page 15 of 19 CS 61C – Fall 2021

Q7 <insert obligatory money pun here> (10 points)
A program is run on a byte-addressed system with a single-level cache, where memory addresses are
10 bits long. After a while, the entire cache has the following state:

Index Tag 1 Valid 1 Tag 2 Valid 2
0b00 0b1011 1 0b1101 1

0b01 0b0011 1 0b0010 1

0b10 0b1110 1 0b0111 0

0b11 0b1111 0 0b0001 0

Q7.1 (1 point) What is the associativity of the cache?

Q7.2 (1.5 points) What is the T:I:O breakdown of memory addresses?

T I O

Q7.3 (1.5 point) How many bytes of data can this cache contain?

Q7.4 (6 points) For each of the following memory accesses, determine if each access would be a hit or
miss based on the cache state shown above, and if it’s a miss, classify the possible miss type(s).
If multiple miss types are possible depending on prior memory accesses, select all possible miss
types.

Note: For this question, each memory access should be considered in isolation. In particular, do
not update the cache state after each memory access.

Address

0b 0011011011 Hit Compulsory miss Capacity miss Conflict miss

0b 0011001101 Hit Compulsory miss Capacity miss Conflict miss

0b 0110100010 Hit Compulsory miss Capacity miss Conflict miss

0b 0010111100 Hit Compulsory miss Capacity miss Conflict miss

0b 1110100010 Hit Compulsory miss Capacity miss Conflict miss

0b 1111111111 Hit Compulsory miss Capacity miss Conflict miss

Final Page 16 of 19 CS 61C – Fall 2021

Q8 Deja-VM (10 points)
One useful aspect of virtual memory is that it allows two distinct programs to try and access the same
virtual memory addresses, and still get different data locations. Consider a system with 64 MiB of
physical memory, which runs programs that have 4 GiB of virtual memory. Our page size is 4 KiB.

Q8.1 (1 point) How many virtual pages do we have? Express your answer as a power of 2.

Q8.2 (1 point) How many bits long is a physical address?

Q8.3 (1 point) How many bits long is a virtual page number?

Final Page 17 of 19 CS 61C – Fall 2021

Regardless of your answer to Q8.2, assume that physical addresses are 20 bits long. We run two programs
(with no shared memory), which access the following virtual memory addresses in order. For each
memory access, determine the physical address that gets accessed, writing your answer in hexadecimal.

Assume that no physical pages are in use prior to the first memory access, and that physical pages get
assigned in order of physical page number (so page 0 is assigned first, then page 1, and so on).

Q8.4 (1 point) Program 1: 0xABCDEFAB

Q8.5 (1 point) Program 1: 0x12345678

Q8.6 (1 point) Program 1: 0xABCDD312

Q8.7 (1 point) Program 2: 0xABCDEFAB

Q8.8 (1 point) Program 2: 0x12345664

Q8.9 (1 point) Program 1: 0x12345664

Q8.10 (1 point) Program 2: 0xABCDEFAB

Final Page 18 of 19 CS 61C – Fall 2021

Q9 Testception 2, 3, 4, AND 5! Now simulcasting! (10 points)
Fred’s Factorization Factory has unveiled their latest product: an algorithm that factorizes an array
of numbers provided. You want to test their factoring algorithm, so you decide to write the following
function:

int testFactor(uint32_t n, uint64_t *a, uint64_t *b, uint64_t *c);

• n: The length of each list of integers. For simplicity, you may assume that n is a multiple of 4.

• a, b, c: Pointers to arrays of 64-bit integers.

testFactor returns 1 if, for all i from 0 to n-1, a[i]*b[i] == c[i]. Otherwise, it returns 0.

You have access to the following SIMD instructions:

• _mm256 vectorLoad(void* ptr): Loads four uint64_t from ptr into a SIMD vector

• void vectorStore(void* ptr, _mm256 mm): Stores the four uint64_t in mm at ptr

• _mm256 vectorMul(_mm256 a, _mm256 b): Multiplies the values in a and b, and returns the
result

• _mm256 vectorSet0(): Returns a vector containing only 0s.

• _mm256 vectorOr(_mm256 a, _mm256 b): Computes the bitwise OR of the two vectors, and
returns the result.

• _mm256 vectorXor(_mm256 a, _mm256 b): Computes the bitwise XOR of the two vectors,
and returns the result.

int testFactor(uint32_t n, uint64_t *a, uint64_t *b, uint64 *c)
{

uint64_t output[4];

_mm256 total = ;

for(int i = 0; i < ; i+=)
{

_mm256 adata = vectorLoad(a+i);
_mm256 bdata = vectorLoad(b+i);
_mm256 cdata = vectorLoad(c+i);

_mm256 prod = ;

_mm256 isequal = ;

;
}
vectorStore(output, total);

return ? 1 : 0;
}

Final Page 19 of 19 CS 61C – Fall 2021

