
CS 61C
Fall 2023

Garcia, Yokota
Final

Print your name:

Print your student ID:

You have 170 minutes. There are 11 questions of varying credit (100 points total).

Question: 1 2 3 4 5 6 7 8 9 10 11 Total

Points: 7 13 6 11 13 7 9 9 8 16 1 100

For questions with circular bubbles,
you may select only one choice.

Unselected option (completely unfilled)

Only one selected option (completely filled)

Don’t do this (it will be graded as incorrect)

For questions with square checkboxes,
you may select one or more choices.

You can select

multiple squares

(completely filled)

Anything you write outside the answer boxes or you cross out will not be graded. If you write multiple
answers, your answer is ambiguous, or the bubble/checkbox is not entirely filled in, we will grade the worst
interpretation. For coding questions with blanks, you may write at most one statement per blank and you
may not use more blanks than provided.

If an answer requires hex input, you must only use capitalized letters (0xDEADBEEF instead of 0xdeadbeef).
For hex and binary, please include prefixes in your answers unless otherwise specified, and do not truncate
any leading 0’s. For all other bases, do not add any prefixes or suffixes.

Write the statement below in the same handwriting you will use on the rest of the exam.

I have neither given nor received help on this exam (or quiz), and have rejected any attempt to cheat;
if these answers are not my own work, I may be deducted up to 0x0123 4567 89AB CDEF points.

Sign your name:

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 20



This page intentionally left (mostly) blank.

The exam begins on the next page.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 20 CS 61C – Fall 2023



Q1 Potpourri (7 points)

Q1.1 (1.5 points) Using multithreading is guaranteed to speed up all programs.

True False

Q1.2 (1.5 points) Virtual memory provides memory isolation across all threads.

True False

Q1.3 (2 points) You currently have a memory system with an L1 cache and DRAM with the following
hit times and hit rates:

Hit Time Local Hit Rate
L1 Cache 5ns 20%
DRAM 250ns 100%

You want to add an L2 Cache to improve the average memory access time of this system. Assume
that the hit time for this L2 Cache would be 15ns. What is the local hit rate that the L2 Cache
would need to make the average memory access time of this system 25ns? Express your answer as
a percentage.

%

Q1.4 (2 points) You have a program that takes 20 seconds to run, but you’ve found a way to make 80%
of the code 4 times faster at the cost of some overhead. After rerunning your program, it takes 13
seconds. What is the overhead (in seconds)?

seconds

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 20 CS 61C – Fall 2023



Q2 Eddy Needs a Project 3 Extension (13 points)
For this problem, assume that we’re working with the single-cycle datapath presented on the reference
card.

Suppose Eddy wants to support the following instruction:

baleq rd rs1 rs2 offset (branch and link if equal)

if (rs1 == rs2) {
rd = PC + 4
PC = PC + offset

}

For each of the following control signals, indicate the value it should have for baleq. If the control
signal is not constant, select “None of the above”.

Q2.1 (1.5 points) PCSel

PC + 4

ALUOut

Doesn’t matter

None of the above

Q2.2 (1.5 points) RegWEn

Write disabled

Write enabled

Doesn’t matter

None of the above

Q2.3 (1.5 points) ASel

rs1

PC

Doesn’t matter

None of the above

Q2.4 (1.5 points) BSel

rs2

imm

Doesn’t matter

None of the above

Q2.5 (1.5 points) BrUn

Signed

Unsigned

Doesn’t matter

None of the above

Q2.6 (1.5 points) WBSel

PC + 4

ALUOut

MemReadData

Doesn’t matter

None of the above

Final (Question 2 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 20 CS 61C – Fall 2023



(Question 2 continued…)

Our RISC-V datapath currently does not support an instruction that atomically loads from and stores to
memory. Suppose we introduce the following instruction:
alsw rd rs2 imm(rs1) (atomic load and store word)

rd = *(rs1 + imm)
*(rs1 + imm) = rs2

Q2.7 (4 points) What additional changes would we need to make to our datapath in order for us to
implement alsw (with as few changes as possible)? Select all that apply.

Create a new instruction type and update the ImmGen

Add a new output to the RegFile for a third register value

Add another WriteData and WriteIndex input to the RegFile

Add a new input to the AMux and update any relevant selector/control logic

Add a new input to the BMux and update any relevant selector/control logic

Add a new ALU operation and update any relevant selector/control logic

Add a third input into ALU and update any relevant selector/control logic

Allow the ALU to send out more than 1 output and update any relevant selector/control
logic

Allow the DMEM to be able to read and write at the same clock cycle and update any relevant
selector/control logic

Add a new input to the WBMux and update any relevant selector/control logic

None of the above

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 20 CS 61C – Fall 2023



Q3 π-pelining (6 points)
For this problem, assume that we’re working with the five-stage pipelined datapath presented on the
reference card, and that the CPU will always predict that branches are not taken.
Consider the following RISC-V code:

1 beq x0 x0 Label
2 addi x0 x0 3
3 addi x0 x0 1
4 addi x0 x0 4
5 addi x0 x0 1
6 addi x0 x0 5
Label:

7 addi t0 x0 9
8 addi t1 t0 2
9 xori t1 x0 6

Suppose that the IF stage of the beq on line 1 occurs during cycle 1.

Q3.1 (3 points) If all hazards are resolved through stalling (no double pumping or forwarding paths),
during which cycle does the xori on line 9 execute its WB stage?

Cycle

For each hazard, write down the hazard, the instructions involved, and the number of stalls required.
We will only look at this box if you request a regrade.

Q3.2 (3 points) If we implement double pumping and all forwarding paths, during which cycle does the
xori on line 9 execute its WB stage?

Cycle

For each hazard, write down the hazard, the instructions involved, and the number of stalls required.
We will only look at this box if you request a regrade.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 20 CS 61C – Fall 2023



Q4 Piracy: arr! (11 points)

For Q4.1, assume that we have a 32-bit address space with a 32KiB, 8-way associative cache with a
block size of 512B.

Q4.1 (3 points) Calculate the TIO bits with this cache setup.

T: I: O:

For Q4.2 to Q4.5, assume that we have a 16 byte, fully associative cache with 4B blocks. For hit rates,
please express your answer as a simplified fraction.

#define ARRAY_SIZE 6
int main() {

int32_t arr[ARRAY_SIZE];

for(int i = 0; i < ARRAY_SIZE; i++) {
arr[i] += arr[0];
arr[i] += arr[1];
arr[i] += arr[2];
arr[i] += arr[3];

}
}

Q4.2 (1.5 points) What is the hit rate for the first iteration of the for loop, using an LRU replacement
policy?

Q4.3 (1.5 points) What is the hit rate for the first iteration of the for loop, using an MRU replacement
policy?

Q4.4 (2.5 points) What is the hit rate for the last iteration of the for loop, using an LRU replacement
policy?

Q4.5 (2.5 points) What is the hit rate for the last iteration of the for loop, using an MRU replacement
policy?

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 20 CS 61C – Fall 2023



Q5 Even Greater Odds (13 points)
Consider the following C function, which returns true if the given array has more even elements
than odd elements, or false otherwise. You may assume that the array only contains strictly positive
integers, that the variables even_count and odd_count will not overflow, and that all necessary C
library header files are included.

1 bool more_even(uint32_t* array, uint32_t n) {
2 uint32_t even_count = 0;
3 uint32_t odd_count = 0;
4 for (uint32_t i = 0; i < n; i++) {
5 if (array[i] % 2 == 0) {
6 even_count++;
7 } else {
8 odd_count++;
9 }

10 }
11 return even_count > odd_count;
12 }

You have access to the following SIMD operations. A vector is a 128-bit vector register capable of
holding 4 32-bit unsigned integers.

• vector vec_load(uint32_t* A): Loads 4 integers at memory address A into a vector
• vector vec_setnum(uint32_t num): Creates a vector where every element is equal to num
• vector vec_and(vector A, vector B): Computes the bitwise AND between each pair of
corresponding vector elements in A and B, and returns a new vector with the result

• vector vec_or(vector A, vector B): Computes the bitwise OR between each pair of corre-
sponding vector elements in A and B, and returns a new vector with the result

• vector vec_xor(vector A, vector B): Computes the bitwise XOR between each pair of
corresponding vector elements in A and B, and returns a new vector with the result

• vector vec_add(vector A, vector B): Adds A and B together elementwise, and returns a
new vector with the result

• uint32_t vec_sum(vector A): Adds all elements of the vector together, and returns the sum

Final (Question 5 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 20 CS 61C – Fall 2023



(Question 5 continued…)

Fill in the blanks below to finish the implementation of more_even_simd. Assume that your code for
this subpart is only required to work on inputs where n (the length of array) is a multiple of 4. You
may only use up to one SIMD operation per blank.

1 bool more_even_simd(uint32_t* array, uint32_t n) {

2 vector counts = vec_setnum(
Q5.1

);

3 vector mask =
Q5.2

;

4 for (uint32_t i = 0; i <
Q5.3

; i+=4) {

5 vector temp = vec_load(
Q5.4

);

6 vector masked =
Q5.5

;

7 counts =
Q5.6

;

8 }

9 return (
Q5.7

) >

10 (
Q5.8

);

11 }

Final (Question 5 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 20 CS 61C – Fall 2023



(Question 5 continued…)

For Q5.9 to Q5.10, consider the following implementations of more_even that use thread-level paral-
lelism. Assume that there are no syntax errors.

For each implementation, determine whether the implementation is...

...correct and faster than the naive more_even

...correct and slower than the naive more_even

...incorrect.

A correct implementation is one that will always return the same value as the naive more_even
function.

You should evaluate the performance of each implementation as the array size approaches infinity (in
other words, when the array is really really large). You may assume that the machine has 16 cores and
OpenMP uses 16 threads.

If you choose “correct and slower” or “incorrect”, please justify your answer. We will only read the first
15 words of each justification.

Q5.9 (2 points)

1 bool more_even_pragma(uint32_t* array, uint32_t n) {
2 uint32_t even_count = 0;
3 uint32_t odd_count = 0;
4 #pragma omp parallel for
5 for (uint32_t i = 0; i < n; i++) {
6 if (array[i] % 2 == 0) {
7 even_count++;
8 } else {
9 odd_count++;
10 }
11 }
12 return even_count > odd_count;
13 }

Correct and faster than the naive more_even

Correct and slower than the naive more_even

Incorrect

Final (Question 5 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 10 of 20 CS 61C – Fall 2023



(Question 5 continued…)

Q5.10 (2 points)

1 bool more_even_pragma(uint32_t* array, uint32_t n) {
2 uint32_t even_count = 0;
3 uint32_t odd_count = 0;
4 #pragma omp parallel
5 {
6 uint32_t evens;
7 uint32_t odds;
8 for (uint32_t i = 0; i < n; i++) {
9 if (array[i] % 2 == 0) {
10 evens++;
11 } else {
12 odds++;
13 }
14 }
15 #pragma omp critical
16 {
17 even_count = evens;
18 odd_count = odds;
19 }
20 }
21 return even_count > odd_count;
22 }

Correct and faster than the naive more_even

Correct and slower than the naive more_even

Incorrect

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 11 of 20 CS 61C – Fall 2023



Q6 Mixed Messages (7 points)
A new data center has to perform 2N tasks using its C cores. These tasks, indexed 0 to 2N - 1 inclusive,
are independent, except that each task N + i must be done after task i has been completed. We decide
to use the manager-worker approach with one process per core, where the manager keeps track of
a queue task_queue containing all unassigned tasks that can be started. We’ll use process 0 as the
manager.

Throughout this question, you must minimize the resources consumed by the data center:

• Do not send unnecessary messages.
• Terminate unused processes as soon as possible.

Assume that each process enters the main loop simultaneously, and that processes will not crash during
execution. We implement this task with the following messages:

• EXECUTE(x), where 0 <= x < 2N.
• EXIT
• DONE(x), where -1 <= x < 2N. DONE(-1) indicates that a worker is ready but has not performed
a task.

A worker should have the following behavior:

Q6.1 (1 point) Before the main loop...

Perform task 0

Send the DONE(-1) message to process 0

Cleanup and exit process

Do nothing

Q6.2 (1 point) Within the main loop, if we receive an EXECUTE(x) message...

Perform task x

Perform task x, then cleanup and exit process

Perform task x and send the DONE(x) message to process 0

Perform task x and send the DONE(x) message to process x

Do nothing

Q6.3 (1 point) Within the main loop, if we receive an EXIT message...

Perform task 0

Send the DONE(-1) message to process 0

Cleanup and exit process

Do nothing

Final (Question 6 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 12 of 20 CS 61C – Fall 2023



(Question 6 continued…)

A manager should have the following behavior:

Q6.4 (1 point) Before the main loop, initialize task_queue to be...

An empty list

A list containing tasks 0 through N - 1 in order

A list containing tasks 0 through 2N - 1 in order

Q6.5 (1 point) Within the main loop, if we receive a DONE(x) message from process p...

Perform task x

Add task x to task_queue

If 0 <= x < N, add task N + x to task_queue

Do nothing

Q6.6 (1 point) Immediately after Q6.5, if the task_queue is not empty...

Remove the first task t in task_queue, send EXECUTE(t) to process 0

Remove the first task t in task_queue, send EXECUTE(t) to process p

Remove the first task t in task_queue, send EXECUTE(N+t) to process 0

Remove the first task t in task_queue, send EXECUTE(N+t) to process p

Send EXIT to process p

Do nothing

Q6.7 (1 point) Immediately after Q6.5, if the task_queue is empty...

Send EXIT to process p

If we have assigned all 2N tasks, send EXIT to process p, otherwise do nothing

Do nothing

Once all workers have received an EXIT, the manager should exit.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 13 of 20 CS 61C – Fall 2023



Q7 The Fault in Our Pages (9 points)

Q7.1 (3 points) Suppose we have a 48-bit address space with 32 GiB of physical memory and a 2 MiB
page size. How many bits are in our page offset, physical page number, and virtual page number?

Offset: bits PPN: bits VPN: bits

Regardless of your answers to Q7.1, now assume we have a 48-bit address space using 24-bit page
offsets, 24-bit virtual page numbers, and 12-bit physical page numbers. The system also has a TLB. The
TLB and a subset of the page table are shown below. You may assume that the next physical page to be
allocated has PPN 0x123, and that all accesses are independent of each other.

TLB
Dirty Valid VPN PPN
1 0 0x00 0000 0x203
0 1 0x00 0003 0x168
0 1 0x00 0002 0x164
1 0 0x61 C002 0x727
1 1 0x61 B001 0xC8E
0 0 0x0F 100F 0xE02
0 1 0x61 C001 0xAF4
1 1 0x00 0001 0x162

Page Table
Index Dirty Valid PPN

0x00 0000 1 1 0x161
0x00 0001 1 1 0x162
0x00 0002 0 1 0x164

...
0x61 C000 0 0 0x625
0x61 C001 0 1 0xAF4
0x61 C002 1 0 0x727

...

For each of the following virtual addresses, translate it into a physical address and determine what will
happen if we access this address.

Q7.2 (2 points) 0x0000 00AB ACAB

0x

TLB hit

TLB miss and page table hit

Page fault

Q7.3 (2 points) 0x61C0 02B1 ADE2

0x

TLB hit

TLB miss and page table hit

Page fault

Q7.4 (2 points) 0x61B0 01FE 3121

0x

TLB hit

TLB miss and page table hit

Page fault

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 14 of 20 CS 61C – Fall 2023



Q8 Cumulative: Unconditional RISC (9 points)
Assume we have a function, f, that takes in a 32-bit unsigned integer, x, as an argument. f(x) is
defined as follows:

f(x) =

⎧{{
⎨{{
⎩

x + 9 if x % 4 == 0
x * 2 if x % 4 == 1
x if x % 4 == 2
x // 8 if x % 4 == 3

Jero wants to write this function in RISC-V, but he couldn’t get his CS61CPU’s branch instructions to
work! As a result, you may use any RV32I instruction except branch instructions.

Write a function, f, which accepts one argument x in a0, and returns f(x). You may assume that there
is no overflow.

1 f:

2
Q8.1

3
Q8.2

4
Q8.3

5 add t3 t3 t7

6 jalr
Q8.4

7
Q8.5

8 j f_end

9
Q8.6

10 j f_end

11
Q8.7

12 j f_end

13
Q8.8

14 f_end:
15 ret

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 15 of 20 CS 61C – Fall 2023



Q9 Cumulative: Orion’s Hell (8 points)
Having failed to completely tame the CS61Cerberus, Heracles has been stuck in Hades for the past two
months. The goddess of knowledge Athena decides to help, by letting Heracles cast a spell on Orion.

Warning: This question is significantly harder than any other problem Heracles has faced so
far.

Recall from the midterm the following:

• Orion has a favorite number, represented as an 𝑛-bit integer. In order to tame Orion, Heracles
must determine Orion’s favorite number (through his solve_orion function) by calling the
orion function on various numbers, and observing the results.

• Originally, the orion function works by performing a bitwise OR on the input and Orion’s favorite
number, and returning 1 (true) if the result is 0, and 0 (false) otherwise.

The below is the compiled (RISC-V RV32I) code of Orion’s orion function:

orion: # Input is received in a0, and the result is outputted in a0
li a1 ORNUM # Orion's favorite number omitted
or a0 a0 a1
bne a0 x0 FalseCase
addi a0 x0 0
jr ra

FalseCase:
addi a0 x0 1
jr ra

Athena’s spell can change one bit in the assembled bytecode of the orion function; Heracles can then
use the modified orion function instead in his solve_orion function. The spell only lasts for a short
time, so solve_orion will now have stricter asymptotic runtime requirements.

After the single bit change, the orion function must still be valid RISC-V code that observes calling
convention, and must still work regardless of any other code (e.g. you can’t load/store to unknown
memory, specify the value of any register except a0, or jump out of the orion function in undefined
manners).

Final (Question 9 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 16 of 20 CS 61C – Fall 2023



(Question 9 continued…)

Q9.1 Select one bit in the orion function to flip, which will allow Heracles to determine Orion’s favorite
number. In addition, write the solve_orion function (in C), which will work given your modified
orion function.
For full credit, your solve_orion must run in 𝑂(1) time relative to the number of bits in Orion’s
favorite number. For 75% credit, your solution may run in 𝑂(𝑛) time instead.

Flip bit of the instruction

to turn it into the instruction .

uint32_t solve_orion(bool(*orion)(uint32_t)) {
// Your code here

}

Q9.2 Briefly explain your solution. We will only look at this box if you request a regrade.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 17 of 20 CS 61C – Fall 2023



Q10 Cumulative: Art Class (16 points)
You wish to create an FSM whose output at time step 𝑁 is 0 for the first two time steps, and the input
of time step 𝑁 − 2 otherwise.

For example, if the input to this FSM was 0b01 1011 1011 1000 1001,

the output should be 0b00 0110 1110 1110 0010.

Q10.1 (8 points) Complete the FSM below. You may not add additional states. Note that you must also
label the state transitions we have provided for you.

00 01

10 11

Start

Final (Question 10 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 18 of 20 CS 61C – Fall 2023



(Question 10 continued…)

Q10.2 (4 points) Fill in the circuit diagram below to implement this FSM. For full credit, your cir-
cuit must have the minimum possible clock period, assuming the following component delays:

𝑡AND gate = 12ps
𝑡OR gate = 15ps

𝑡NOT gate = 4ps
𝑡XOR gate = 31ps

𝑡Register clk-to-q = 10ps
𝑡Register setup = 15ps

𝑡Bit splitter = 0ps
𝑡Wire = 0ps

You may not use any other components. You may assume that the input and output connect
directly to registers (for the purpose of determining the clock period), and that the register stores
2 bits. Your circuit does not need to ”match” the states you use in your answer to Q10.1; it will be
considered correct if its behavior matches the intended behavior described above.

Unsatisfied with just delaying the input by 2 cycles, you decide to create an FSM that delays the input
by 12 cycles (and outputs 0 for the first 12 cycles).
For example, if the input to the new FSM was 0b01 1011 1011 1000 1001,

you should output 0b00 0000 0000 0001 1011.

Q10.3 (2 points) What is the fewest number of states that an FSM solving this problem can have? Your
answer must be an exact integer.

Q10.4 (2 points) What is the minimum clock period of any circuit that solves this problem (assuming
the register is expanded to sufficiently many bits without increasing clk-to-q and setup times)?

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 19 of 20 CS 61C – Fall 2023



Q11 The Finish Line (1 points)
Everyone will receive credit for this question, even if you leave it blank.

Q11.1 (1 point) How long does it take to “do nothing”?

Q11.2 (0 points) If there’s anything else you want us to know, or you feel like there was an ambiguity in
the exam, please put it in the box below.
For ambiguities, you must qualify your answer and provide an answer for both interpretations.
For example, “if the question is asking about A, then my answer is X, but if the question is asking
about B, then my answer is Y”. You will only receive credit if it is a genuine ambiguity and both of
your answers are correct. We will only look at ambiguities if you request a regrade.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 20 of 20 CS 61C – Fall 2023


