
CS 61C
Fall 2023

Garcia, Yokota
Final

Solutions last updated: Wednesday, December 20th, 2023
Print your name:

Print your student ID:

You have 170 minutes. There are 11 questions of varying credit (100 points total).

Question: 1 2 3 4 5 6 7 8 9 10 11 Total

Points: 7 13 6 11 13 7 9 9 8 16 1 100

For questions with circular bubbles,
you may select only one choice.

Unselected option (completely unfilled)

Only one selected option (completely filled)

Don’t do this (it will be graded as incorrect)

For questions with square checkboxes,
you may select one or more choices.

You can select

multiple squares

(completely filled)

Anything you write outside the answer boxes or you cross out will not be graded. If you write multiple
answers, your answer is ambiguous, or the bubble/checkbox is not entirely filled in, we will grade the worst
interpretation. For coding questions with blanks, you may write at most one statement per blank and you
may not use more blanks than provided.

If an answer requires hex input, you must only use capitalized letters (0xDEADBEEF instead of 0xdeadbeef).
For hex and binary, please include prefixes in your answers unless otherwise specified, and do not truncate
any leading 0’s. For all other bases, do not add any prefixes or suffixes.

Write the statement below in the same handwriting you will use on the rest of the exam.

I have neither given nor received help on this exam (or quiz), and have rejected any attempt to cheat;
if these answers are not my own work, I may be deducted up to 0x0123 4567 89AB CDEF points.

Sign your name:

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 29

Clarifications made during the exam:
Q4: You may assume that i is stored in a register.
Q4: You may assume that the cache starts cold.
Q5.10: Lines 6 and 7 should say

uint32_t evens = 0;
uint32_t odds = 0;

Q7: ”48-bit address space” refers to a virtual address space.
Q9: The written description and given code is erroneously inverted. Assume that the code is correct.
Q8: The function f returns f(x) in a0. On line 5, t7 should be t6.
Q9: The argument to solve_orion should say uint32_t(*orion)(uint32_t).
Q9.1: You may use functions from standard libraries, but may not use any other external functions.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 29 CS 61C – Fall 2023

Q1 Potpourri (7 points)

Q1.1 (1.5 points) Using multithreading is guaranteed to speed up all programs.

True False

Solution: Using multithreading to add together two numbers is not faster than using a single
thread due to the overhead.

Q1.2 (1.5 points) Virtual memory provides memory isolation across all threads.

True False

Solution: Threads within the same process share the same address space, so memory is not
isolated.

Q1.3 (2 points) You currently have a memory system with an L1 cache and DRAM with the following
hit times and hit rates:

Hit Time Local Hit Rate
L1 Cache 5ns 20%
DRAM 250ns 100%

You want to add an L2 Cache to improve the average memory access time of this system. Assume
that the hit time for this L2 Cache would be 15ns. What is the local hit rate that the L2 Cache
would need to make the average memory access time of this system 25ns? Express your answer as
a percentage.

Solution: 96%.

𝑡L1 + 𝑀𝑅L1 × (𝑡L2 + 𝑀𝑅L2 × 𝑡DRAM) = 25𝑛𝑠
5𝑛𝑠 + 0.8 × (15𝑛𝑠 + 𝑀𝑅L2 × 250𝑛𝑠) = 25𝑛𝑠

0.8 × (15𝑛𝑠 + 𝐻𝑅L2 × 250𝑛𝑠) = 20𝑛𝑠
15𝑛𝑠 + 𝑀𝑅L2 × 250𝑛𝑠 = 25𝑛𝑠

𝑀𝑅L2 × 250𝑛𝑠 = 10𝑛𝑠

𝑀𝑅L2 = 1
25

= %

Since the miss rate for the L2 cache is 4%, the hit rate must be 96%.
Grading: This problem was graded on an all-or-nothing basis.

Final (Question 1 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 29 CS 61C – Fall 2023

(Question 1 continued…)

Q1.4 (2 points) You have a program that takes 20 seconds to run, but you’ve found a way to make 80%
of the code 4 times faster at the cost of some overhead. After rerunning your program, it takes 13
seconds. What is the overhead (in seconds)?

Solution: 5 seconds
80% of the 20 second program would take 16 seconds, and would take 4 seconds if we make it
4 times faster. The ramining 20% of the program, or 4 seconds, remains the same. If there was
no overhead, it would take 8 seconds (4 seconds from non-parallelizable section and 4 seconds
from the parallelized section). Since the overall runtime was 13 seconds, this must mean the
overhead is 5 seconds.
Grading: This problem was graded on an all-or-nothing basis.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 29 CS 61C – Fall 2023

Q2 Eddy Needs a Project 3 Extension (13 points)
For this problem, assume that we’re working with the single-cycle datapath presented on the reference
card.

Suppose Eddy wants to support the following instruction:

baleq rd rs1 rs2 offset (branch and link if equal)

if (rs1 == rs2) {
rd = PC + 4
PC = PC + offset

}

For each of the following control signals, indicate the value it should have for baleq. If the control
signal is not constant, select “None of the above”.

Q2.1 (1.5 points) PCSel

PC + 4

ALUOut

Doesn’t matter

None of the above

Solution: The value of PCSel is determined by the output of the branch comparator, so it is
not a constant, therefore ”None of the above”.

Q2.2 (1.5 points) RegWEn

Write disabled

Write enabled

Doesn’t matter

None of the above

Solution: The value of RegWEn is determined by the output of the branch comparator (since
we only update rd if the branch is taken), so it is not a constant, therefore ”None of the above”.

Q2.3 (1.5 points) ASel

rs1

PC

Doesn’t matter

None of the above

Solution: Since the ALU needs to compute PC + offset, ASel must be PC. This is identical to
branch instructions.

Final (Question 2 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 29 CS 61C – Fall 2023

(Question 2 continued…)

Q2.4 (1.5 points) BSel

rs2

imm

Doesn’t matter

None of the above

Solution: Since the ALU needs to compute PC + offset, BSel must be imm. This is identical to
branch instructions.

Q2.5 (1.5 points) BrUn

Signed

Unsigned

Doesn’t matter

None of the above

Solution: Since we only check if rs1 == rs2, it doesn’t matter if the branch comparator
makes a signed or unsigned comparison.

Q2.6 (1.5 points) WBSel

PC + 4

ALUOut

MemReadData

Doesn’t matter

None of the above

Solution: We need to write PC + 4 back to rd, so we should select PC + 4 for WBSel.

Final (Question 2 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 29 CS 61C – Fall 2023

(Question 2 continued…)

Our RISC-V datapath currently does not support an instruction that atomically loads from and stores to
memory. Suppose we introduce the following instruction:
alsw rd rs2 imm(rs1) (atomic load and store word)

rd = *(rs1 + imm)
*(rs1 + imm) = rs2

Q2.7 (4 points) What additional changes would we need to make to our datapath in order for us to
implement alsw (with as few changes as possible)? Select all that apply.

Create a new instruction type and update the ImmGen

Add a new output to the RegFile for a third register value

Add another WriteData and WriteIndex input to the RegFile

Add a new input to the AMux and update any relevant selector/control logic

Add a new input to the BMux and update any relevant selector/control logic

Add a new ALU operation and update any relevant selector/control logic

Add a third input into ALU and update any relevant selector/control logic

Allow the ALU to send out more than 1 output and update any relevant selector/control
logic

Allow the DMEM to be able to read and write at the same clock cycle and update any relevant
selector/control logic

Add a new input to the WBMux and update any relevant selector/control logic

None of the above

Solution: Since this instruction has rd, rs1, rs2, and imm, we need to create a new instruction
type (as no current instruction type support all of these fields). We also need to create a new
immediate type for this new instruction type since we can’t share an immediate type with
another instruction type.
This instruction also performs one read and one write memory operation in the same cycle,
which is currently not supported by our DMEM (as it only has one port). Therefore, we need
to allow the DMEM to read and write in the same cycle.
The remaining control signals remain the same as a load instruction, so we don’t need to add
any additional inputs/outputs to other components.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 29 CS 61C – Fall 2023

Q3 π-pelining (6 points)
For this problem, assume that we’re working with the five-stage pipelined datapath presented on the
reference card, and that the CPU will always predict that branches are not taken.

Consider the following RISC-V code:

1 beq x0 x0 Label
2 addi x0 x0 3
3 addi x0 x0 1
4 addi x0 x0 4
5 addi x0 x0 1
6 addi x0 x0 5
Label:

7 addi t0 x0 9
8 addi t1 t0 2
9 xori t1 x0 6

Suppose that the IF stage of the beq on line 1 occurs during cycle 1.

Q3.1 (3 points) If all hazards are resolved through stalling (no double pumping or forwarding paths),
during which cycle does the xori on line 9 execute its WB stage?
For each hazard, write down the hazard, the instructions involved, and the number of stalls required.
We will only look at this box if you request a regrade.

Solution: There is a control hazard from line 1 to line 7, as the branch will al-
ways be taken. Then, from line 7 to line 8, we have a data hazard from writing to
t0 to accessing it again in the next line. This leads to the below timing diagram:

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1. beq x0 x0 Label IF ID EX MEM WB
2. addi x0 x0 3 −> nop IF X X X X
3. addi x0 x0 1 −> nop IF X X X X
4. addi x0 x0 4 −> nop IF X X X X
7. addi t0 x0 9 IF ID EX MEM WB
8. addi t1 t0 2 −> nop IF X X X X
8. addi t1 t0 2 −> nop IF X X X X
8. addi t1 t0 2 −> nop IF X X X WB
8. addi t1 t0 2 IF ID EX MEM WB
9. xori t1 x0 6 IF ID EX MEM WB

Final (Question 3 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 29 CS 61C – Fall 2023

(Question 3 continued…)

Q3.2 (3 points) If we implement double pumping and all forwarding paths, during which cycle does the
xori on line 9 execute its WB stage?
For each hazard, write down the hazard, the instructions involved, and the number of stalls required.
We will only look at this box if you request a regrade.

Solution: There is still the control hazard from line 1 to line 7, as the
branch will always be taken. The data hazard from line 7 to line 8, for reg-
ister t0 is resolved via forwarding. This leads to the below timing diagram:

Instruction 1 2 3 4 5 6 7 8 9 10 11
1. beq x0 x0 Label IF ID EX MEM WB
2. addi x0 x0 3 −> nop IF X X X X
3. addi x0 x0 1 −> nop IF X X X X
4. addi x0 x0 4 −> nop IF X X X X
7. addi t0 x0 9 IF ID EX MEM WB
8. addi t1 t0 2 IF ID EX MEM WB
9. xori t1 x0 6 IF ID EX MEM WB

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 29 CS 61C – Fall 2023

Q4 Piracy: arr! (11 points)

For Q4.1, assume that we have a 32-bit address space with a 32KiB, 8-way associative cache with a
block size of 512B.

Q4.1 (3 points) Calculate the TIO bits with this cache setup.

Solution: 20/3/9
The offset equals log2(block size) = 9. Then, the index equals log2 (cache size

block size⋅associativity) = 3.
Finally, the tag is equal to address length − index − offset = 20.

For Q4.2 to Q4.5, assume that we have a 16 byte, fully associative cache with 4B blocks. For hit rates,
please express your answer as a simplified fraction.

#define ARRAY_SIZE 6
int main() {

int32_t arr[ARRAY_SIZE];

for(int i = 0; i < ARRAY_SIZE; i++) {
arr[i] += arr[0];
arr[i] += arr[1];
arr[i] += arr[2];
arr[i] += arr[3];

}
}

Q4.2 (1.5 points) What is the hit rate for the first iteration of the for loop, using an LRU replacement
policy?

Solution: 2/3. We have 12 accesses total per iteration after splitting up the line arr[i]
+= arr[0] into arr[i] = arr[i] + arr[0], and likewise with the other lines. The first
access to arr[0], arr[1], arr[2] and arr[3] result in compulsory misses, but the other
accesses hit, meaning that we have a total of 8 hits out of 12 accesses, resulting in a 2/3 hitrate.

Q4.3 (1.5 points) What is the hit rate for the first iteration of the for loop, using an MRU replacement
policy?

Solution: 2/3, for the same reason as Q4.2.

Final (Question 4 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 10 of 29 CS 61C – Fall 2023

(Question 4 continued…)

Q4.4 (2.5 points) What is the hit rate for the last iteration of the for loop, using an LRU replacement
policy?

Solution: 7/12. The key insight here is to notice that once we start accessing arr[4] and
greater, we begin to have to evict members. For ease of explanation, we consider the 5th
iteration of the loop below. Listing out the 12 accesses, we have the below cache state at the
start of the iteration:

Data LRU
arr[0] 3
arr[1] 2
arr[2] 1
arr[3] 0

1. Read arr[4]. This evicts arr[0], resulting in a miss.

2. Read arr[0]. This evicts arr[1], resulting in a miss.

3. Write to arr[4]. This results in a hit.

4. Read arr[4]. This results in a hit.

5. Read arr[1]. This evicts arr[2], resulting in a miss.

6. Write to arr[4]. This results in a hit.

7. Read arr[4]. This results in a hit.

8. Read arr[2]. This evicts arr[3], resulting in a miss.

9. Write to arr[4]. This results in a hit.

10. Read arr[4]. This results in a hit.

11. Read arr[3]. This evicts arr[0], resulting in a miss.

12. Write to arr[4]. This results in a hit.

Counting our hits, we have 7 hits and 5 misses, leading to our above hitrate.

Final (Question 4 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 11 of 29 CS 61C – Fall 2023

(Question 4 continued…)

Q4.5 (2.5 points) What is the hit rate for the last iteration of the for loop, using an MRU replacement
policy?

Solution: 3/4. Once again, the key insight here is to notice that once we start accessing
arr[4] and greater, we begin to have to evict members. For ease of explanation, we consider
the 5th iteration of the loop below. Listing out the 12 accesses, we have the below cache state
at the start of the iteration:

Data LRU
arr[0] 3
arr[1] 2
arr[2] 1
arr[3] 0

1. Read arr[4]. This evicts arr[3], resulting in a miss.

2. Read arr[0]. This results in a hit.

3. Write to arr[4]. This results in a hit.

4. Read arr[4]. This results in a hit.

5. Read arr[1]. This results in a hit.

6. Write to arr[4]. This results in a hit.

7. Read arr[4]. This results in a hit.

8. Read arr[2]. This results in a hit.

9. Write to arr[4]. This results in a hit.

10. Read arr[4]. This results in a hit.

11. Read arr[3]. This evicts arr[4], resulting in a miss.

12. Write to arr[4]. This evicts arr[3], resulting in a miss.

Counting our hits, we have 9 hits and 3 misses, leading to our above hitrate.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 12 of 29 CS 61C – Fall 2023

Q5 Even Greater Odds (13 points)
Consider the following C function, which returns true if the given array has more even elements
than odd elements, or false otherwise. You may assume that the array only contains strictly positive
integers, that the variables even_count and odd_count will not overflow, and that all necessary C
library header files are included.

1 bool more_even(uint32_t* array, uint32_t n) {
2 uint32_t even_count = 0;
3 uint32_t odd_count = 0;
4 for (uint32_t i = 0; i < n; i++) {
5 if (array[i] % 2 == 0) {
6 even_count++;
7 } else {
8 odd_count++;
9 }

10 }
11 return even_count > odd_count;
12 }

You have access to the following SIMD operations. A vector is a 128-bit vector register capable of
holding 4 32-bit unsigned integers.

• vector vec_load(uint32_t* A): Loads 4 integers at memory address A into a vector
• vector vec_setnum(uint32_t num): Creates a vector where every element is equal to num
• vector vec_and(vector A, vector B): Computes the bitwise AND between each pair of
corresponding vector elements in A and B, and returns a new vector with the result

• vector vec_or(vector A, vector B): Computes the bitwise OR between each pair of corre-
sponding vector elements in A and B, and returns a new vector with the result

• vector vec_xor(vector A, vector B): Computes the bitwise XOR between each pair of
corresponding vector elements in A and B, and returns a new vector with the result

• vector vec_add(vector A, vector B): Adds A and B together elementwise, and returns a
new vector with the result

• uint32_t vec_sum(vector A): Adds all elements of the vector together, and returns the sum

Final (Question 5 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 13 of 29 CS 61C – Fall 2023

(Question 5 continued…)

Fill in the blanks below to finish the implementation of more_even_simd. Assume that your code for
this subpart is only required to work on inputs where n (the length of array) is a multiple of 4. You
may only use up to one SIMD operation per blank.

1 bool more_even_simd(uint32_t* array, uint32_t n) {

2 vector counts = vec_setnum(0
Q5.1

);

3 vector mask = vec_setnum(1)
Q5.2

;

4 for (uint32_t i = 0; i < n / 4 * 4
Q5.3

; i+=4) {

5 vector temp = vec_load(array + i
Q5.4

);

6 vector masked = vec_and(temp, mask)
Q5.5

;

7 counts = vec_add(counts, masked)
Q5.6

;

8 }

9 return (n / 2
Q5.7

) >

10 (vec_sum(counts)
Q5.8

);

11 }

Final (Question 5 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 14 of 29 CS 61C – Fall 2023

(Question 5 continued…)

For Q5.9 to Q5.10, consider the following implementations of more_even that use thread-level paral-
lelism. Assume that there are no syntax errors.

For each implementation, determine whether the implementation is...

...correct and faster than the naive more_even

...correct and slower than the naive more_even

...incorrect.

A correct implementation is one that will always return the same value as the naive more_even
function.

You should evaluate the performance of each implementation as the array size approaches infinity (in
other words, when the array is really really large). You may assume that the machine has 16 cores and
OpenMP uses 16 threads.

If you choose “correct and slower” or “incorrect”, please justify your answer. We will only read the first
15 words of each justification.

Q5.9 (2 points)

1 bool more_even_pragma(uint32_t* array, uint32_t n) {
2 uint32_t even_count = 0;
3 uint32_t odd_count = 0;
4 #pragma omp parallel for
5 for (uint32_t i = 0; i < n; i++) {
6 if (array[i] % 2 == 0) {
7 even_count++;
8 } else {
9 odd_count++;
10 }
11 }
12 return even_count > odd_count;
13 }

Correct and faster than the naive more_even

Correct and slower than the naive more_even

Incorrect

Solution: There is a race condition through multiple threads accessing even_count and
odd_count without critical sections or reductions.

Final (Question 5 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 15 of 29 CS 61C – Fall 2023

(Question 5 continued…)

Q5.10 (2 points)

1 bool more_even_pragma(uint32_t* array, uint32_t n) {
2 uint32_t even_count = 0;
3 uint32_t odd_count = 0;
4 #pragma omp parallel
5 {
6 uint32_t evens;
7 uint32_t odds;
8 for (uint32_t i = 0; i < n; i++) {
9 if (array[i] % 2 == 0) {
10 evens++;
11 } else {
12 odds++;
13 }
14 }
15 #pragma omp critical
16 {
17 even_count = evens;
18 odd_count = odds;
19 }
20 }
21 return even_count > odd_count;
22 }

Correct and faster than the naive more_even

Correct and slower than the naive more_even

Incorrect

Solution: There is no declaration of parallelizing the for loop via a #pragma omp parallel
for directive. However, since each thread completes all of the word, the direct assignment on
lines 17 and 18 give us the correct answer.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 16 of 29 CS 61C – Fall 2023

Q6 Mixed Messages (7 points)
A new data center has to perform 2N tasks using its C cores. These tasks, indexed 0 to 2N - 1 inclusive,
are independent, except that each task N + i must be done after task i has been completed. We decide
to use the manager-worker approach with one process per core, where the manager keeps track of
a queue task_queue containing all unassigned tasks that can be started. We’ll use process 0 as the
manager.

Throughout this question, you must minimize the resources consumed by the data center:

• Do not send unnecessary messages.
• Terminate unused processes as soon as possible.

Assume that each process enters the main loop simultaneously, and that processes will not crash during
execution. We implement this task with the following messages:

• EXECUTE(x), where 0 <= x < 2N.
• EXIT
• DONE(x), where -1 <= x < 2N. DONE(-1) indicates that a worker is ready but has not performed
a task.

A worker should have the following behavior:

Q6.1 (1 point) Before the main loop...

Perform task 0

Send the DONE(-1) message to process 0

Cleanup and exit process

Do nothing

Solution: Since DONE(-1) is defined to indicate that a worker is ready but has not performed
a task, we send this message when a worker is about to start.

Q6.2 (1 point) Within the main loop, if we receive an EXECUTE(x) message...

Perform task x

Perform task x, then cleanup and exit process

Perform task x and send the DONE(x) message to process 0

Perform task x and send the DONE(x) message to process x

Do nothing

Solution: We must include the task number in the done message in order to be able to handle
prerequisites.

Final (Question 6 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 17 of 29 CS 61C – Fall 2023

(Question 6 continued…)

Q6.3 (1 point) Within the main loop, if we receive an EXIT message...

Perform task 0

Send the DONE(-1) message to process 0

Cleanup and exit process

Do nothing

Solution: We clean up and exit upon receiving the EXIT.

A manager should have the following behavior:

Q6.4 (1 point) Before the main loop, initialize task_queue to be...

An empty list

A list containing tasks 0 through N - 1 in order

A list containing tasks 0 through 2N - 1 in order

Solution: We must initialize the task list to only have the tasks with no prereqs.

Q6.5 (1 point) Within the main loop, if we receive a DONE(x) message from process p...

Perform task x

Add task x to task_queue

If 0 <= x < N, add task N + x to task_queue

Do nothing

Solution: Once a task is completed, we can add the task that depended on it to the queue.

Q6.6 (1 point) Immediately after Q6.5, if the task_queue is not empty...

Remove the first task t in task_queue, send EXECUTE(t) to process 0

Remove the first task t in task_queue, send EXECUTE(t) to process p

Remove the first task t in task_queue, send EXECUTE(N+t) to process 0

Remove the first task t in task_queue, send EXECUTE(N+t) to process p

Send EXIT to process p

Do nothing

Solution: We assign the first task available to the now ready thread.

Final (Question 6 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 18 of 29 CS 61C – Fall 2023

(Question 6 continued…)

Q6.7 (1 point) Immediately after Q6.5, if the task_queue is empty...

Send EXIT to process p

If we have assigned all 2N tasks, send EXIT to process p, otherwise do nothing

Do nothing

Solution: Since we must terminate cores as soon as possible, we must immediately send the
core an EXIT message once the queue is empty. For example, if N=5 and task 1 was some
long-running task, then task 6 would not show up in the queue until task 1 completed. If we
only terminated cores once all tasks have been assigned, then all cores would have to wait for
1 to finish so that task 6 can be assigned.
Alternate explanation: We can immediately ask process p to exit immediately, since it is
guaranteed that the process that completed task N can immediately complete task 2N afterwards,
so there’s no need to keep around processes when the queue is empty.

Once all workers have received an EXIT, the manager should exit.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 19 of 29 CS 61C – Fall 2023

Q7 The Fault in Our Pages (9 points)

Q7.1 (3 points) Suppose we have a 48-bit address space with 32 GiB of physical memory and a 2 MiB
page size. How many bits are in our page offset, physical page number, and virtual page number?

Solution: 21/14/27
Our offset comes from log2(page size) = 21. Then, the length of a physical address comes
from log2(physical memory size) = 35. Recalling that the structure of a VA is VPN|Offset
and the structure of a PA is PPN|Offset, we get that there are 27 VPN bits and 14 PPN bits.

Regardless of your answers to Q7.1, now assume we have a 48-bit address space using 24-bit page
offsets, 24-bit virtual page numbers, and 12-bit physical page numbers. The system also has a TLB. The
TLB and a subset of the page table are shown below. You may assume that the next physical page to be
allocated has PPN 0x123, and that all accesses are independent of each other.

TLB
Dirty Valid VPN PPN
1 0 0x00 0000 0x203
0 1 0x00 0003 0x168
0 1 0x00 0002 0x164
1 0 0x61 C002 0x727
1 1 0x61 B001 0xC8E
0 0 0x0F 100F 0xE02
0 1 0x61 C001 0xAF4
1 1 0x00 0001 0x162

Page Table
Index Dirty Valid PPN

0x00 0000 1 1 0x161
0x00 0001 1 1 0x162
0x00 0002 0 1 0x164

...
0x61 C000 0 0 0x625
0x61 C001 0 1 0xAF4
0x61 C002 1 0 0x727

...
For each of the following virtual addresses, translate it into a physical address and determine what will
happen if we access this address.

Q7.2 (2 points) 0x0000 00AB ACAB

Solution: We split the address into VPN: 0x00 0000 and
Offset: 0xAB ACAB. Then, we look in the TLB and extract
the following entry:

Dirty Valid VPN PPN
1 0 0x00 0000 0x203

Since this is not valid, we go to the page table and extract
the following entry:

Index Dirty Valid PPN
0x00 0000 1 1 0x161

Since this is valid, we have a page table hit, and grabbing
the PPN, we have 0x161ABACAB.

TLB hit

TLB miss and page table hit

Page fault

Final (Question 7 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 20 of 29 CS 61C – Fall 2023

(Question 7 continued…)

Q7.3 (2 points) 0x61C0 02B1 ADE2

Solution: We split the address into VPN: 0x61 C002 and
Offset: 0xB1 ADE2. Then, we look in the TLB and extract
the following entry:

Dirty Valid VPN PPN
1 0 0x61 C002 0x727

Since this is not valid, we go to the page table and extract
the following entry:

Index Dirty Valid PPN
0x61 C002 1 0 0x727

Since this is also not valid, we have a page fault, and assign
the next PPN, 0x123. Thus, we have 0x123B1ADE2.

TLB hit

TLB miss and page table hit

Page fault

Q7.4 (2 points) 0x61B0 01FE 3121

Solution: We split the address into VPN: 0x61 B001 and
Offset: 0xFE 3121. Then, we look in the TLB and extract
the following entry:

Dirty Valid VPN PPN
1 1 0x61 B001 0xC8E

Since this is valid, we have a TLB hit, and we grab our PPN
and create the address 0xC8EFE3121.

TLB hit

TLB miss and page table hit

Page fault

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 21 of 29 CS 61C – Fall 2023

Q8 Cumulative: Unconditional RISC (9 points)
Assume we have a function, f, that takes in a 32-bit unsigned integer, x, as an argument. f(x) is
defined as follows:

f(x) =

⎧{{
⎨{{
⎩

x + 9 if x % 4 == 0
x * 2 if x % 4 == 1
x if x % 4 == 2
x // 8 if x % 4 == 3

Jero wants to write this function in RISC-V, but he couldn’t get his CS61CPU’s branch instructions to
work! As a result, you may use any RV32I instruction except branch instructions.

Write a function, f, which accepts one argument x in a0, and returns f(x). You may assume that there
is no overflow.

1 f:

2 andi t3 a0 3
Q8.1

3 slli t3 t3 3
Q8.2

4 auipc t7 0
Q8.3

5 add t3 t3 t7

6 jalr x0 t3 12
Q8.4

7 addi a0 a0 9
Q8.5

8 j f_end

9 slli a0 a0 1
Q8.6

10 j f_end

11 nop
Q8.7

12 j f_end

13 srli a0 a0 3
Q8.8

14 f_end:
15 ret

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 22 of 29 CS 61C – Fall 2023

Q9 Cumulative: Orion’s Hell (8 points)
Having failed to completely tame the CS61Cerberus, Heracles has been stuck in Hades for the past two
months. The goddess of knowledge Athena decides to help, by letting Heracles cast a spell on Orion.

Warning: This question is significantly harder than any other problem Heracles has faced so
far.

Recall from the midterm the following:

• Orion has a favorite number, represented as an 𝑛-bit integer. In order to tame Orion, Heracles
must determine Orion’s favorite number (through his solve_orion function) by calling the
orion function on various numbers, and observing the results.

• Originally, the orion function works by performing a bitwise OR on the input and Orion’s favorite
number, and returning 1 (true) if the result is 0, and 0 (false) otherwise.

The below is the compiled (RISC-V RV32I) code of Orion’s orion function:

orion: # Input is received in a0, and the result is outputted in a0
li a1 ORNUM # Orion's favorite number omitted
or a0 a0 a1
bne a0 x0 FalseCase
addi a0 x0 0
jr ra

FalseCase:
addi a0 x0 1
jr ra

Athena’s spell can change one bit in the assembled bytecode of the orion function; Heracles can then
use the modified orion function instead in his solve_orion function. The spell only lasts for a short
time, so solve_orion will now have stricter asymptotic runtime requirements.

After the single bit change, the orion function must still be valid RISC-V code that observes calling
convention, and must still work regardless of any other code (e.g. you can’t load/store to unknown
memory, specify the value of any register except a0, or jump out of the orion function in undefined
manners).

Final (Question 9 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 23 of 29 CS 61C – Fall 2023

(Question 9 continued…)

Q9.1 Select one bit in the orion function to flip, which will allow Heracles to determine Orion’s favorite
number. In addition, write the solve_orion function (in C), which will work given your modified
orion function.
For full credit, your solve_orion must run in 𝑂(1) time relative to the number of bits in Orion’s
favorite number. For 75% credit, your solution may run in 𝑂(𝑛) time instead.

Flip bit of the instruction
to turn it into the instruction .
uint32_t solve_orion(uint32_t (*orion)(uint32_t)) {

// Your code here

}

Q9.2 Briefly explain your solution. We will only look at this box if you request a regrade.

Solution: Note: This solution assumes familiarity with the solution to CS61Cerberus, found on
the Fall 2023 midterm. Multiple solutions were possible. In ascending order of efficiency:

• Flip bit 13 of or a0 a0 a1 to turn it into xor a0 a0 a1. This reduces this problem to
solving Luxor (see the midterm), which takes Θ(2𝑁) time.

• Flip bit 12 of or a0 a0 a1 to turn it into and a0 a0 a1. This reduces this problem to
solving Andy (see the midterm), which takes Θ(𝑁) time.

• Flip bit 14 of or a0 a0 a1 to turn it into slt a0 a0 a1. This changes orion so that it
returns 1 if and only if its input is less than Orion’s number. We can binary search this to
determine Orion’s number in Θ(𝑁) time. An example code solution is:

uint32_t solve_orion(uint32_t (*orion)(uint32_t)) {
int32_t min = 0x80000000;
int32_t max = 0x7FFFFFFF;
while((uint32_t) (max-min) > 0) {

int32_t avg = ((uint64_t) min+max)/2;
if(avg < n) {

min = avg+1;
}
else {

max = avg;
}

}
return min;

}

Final (Question 9 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 24 of 29 CS 61C – Fall 2023

(Question 9 continued…)

• Flip bit 7 or 9 of addi a0 x0 1 to turn it into addi a1 x0 1 or addi a4 x0 1. Either
way, this changes orion so that it never sets a0 to 1 when the or returns a nonzero value.
Therefore, the function will return the bitwise OR of its input and Orion’s number. We can
thus simply return orion(0) to solve this problem.

• Flip bit 9 of bne a0 x0 FalseCase, which changes the immediate to jump 2 instructions
instead of 3 instructions. This also prevents the addi a0 x0 1 line from running, thus
allowing us to return Orion’s number by returning orion(0).

• Flip no bit at all. Since we now know how Orion’s function is defined, we can access the first
64 bits of the orion function to get the li instruction directly, and thus extract ORNUM
directly. It is also possible to flip bit 3 of addi a0 x0 1 to turn it into auipc a0 256,
which causes Orion to return PC+(220), and use that as a relative offset. An example code
solution is:

uint32_t solve_orion(uint32_t (*orion)(uint32_t)) {
uint32_t firstInstruction = ((uint32_t*)(orion))[0];
if((firstInstruction&127)==0x33) {

return firstInstruction>>20;
}
uint32_t secondInstruction = ((uint32_t*)(orion))[1];
return ((firstInstruction>>12)<<12)+(secondInstruction>>20);

}

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 25 of 29 CS 61C – Fall 2023

Q10 Cumulative: Art Class (16 points)
You wish to create an FSM whose output at time step 𝑁 is 0 for the first two time steps, and the input
of time step 𝑁 − 2 otherwise.

For example, if the input to this FSM was 0b01 1011 1011 1000 1001,

the output should be 0b00 0110 1110 1110 0010.

Q10.1 (8 points) Complete the FSM below. You may not add additional states. Note that you must also
label the state transitions we have provided for you.

00 01

10 11

1/0

1/0

0/1

0/1

1/1

0/0

1/1

0/0

Start

Final (Question 10 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 26 of 29 CS 61C – Fall 2023

(Question 10 continued…)

Q10.2 (4 points) Fill in the circuit diagram below to implement this FSM. For full credit, your cir-
cuit must have the minimum possible clock period, assuming the following component delays:

𝑡AND gate = 12ps
𝑡OR gate = 15ps

𝑡NOT gate = 4ps
𝑡XOR gate = 31ps

𝑡Register clk-to-q = 10ps
𝑡Register setup = 15ps

𝑡Bit splitter = 0ps
𝑡Wire = 0ps

You may not use any other components. You may assume that the input and output connect
directly to registers (for the purpose of determining the clock period), and that the register stores
2 bits. Your circuit does not need to ”match” the states you use in your answer to Q10.1; it will be
considered correct if its behavior matches the intended behavior described above.

Unsatisfied with just delaying the input by 2 cycles, you decide to create an FSM that delays the input
by 12 cycles (and outputs 0 for the first 12 cycles).
For example, if the input to the new FSM was 0b01 1011 1011 1000 1001,

you should output 0b00 0000 0000 0001 1011.

Q10.3 (2 points) What is the fewest number of states that an FSM solving this problem can have? Your
answer must be an exact integer.

Solution: 4096. To get this answer, notice that to reference something from 12 inputs ago in
an FSM, we must keep a record of that for at least 12 states. In other words, we must ”encode”
12 bits of memory into our FSM states, requiring 212 = 4096 states.

Final (Question 10 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 27 of 29 CS 61C – Fall 2023

(Question 10 continued…)

Q10.4 (2 points) What is the minimum clock period of any circuit that solves this problem (assuming
the register is expanded to sufficiently many bits without increasing clk-to-q and setup times)?

Solution: 25ns. Since the circuit will look exactly the same as the solution above, but
extended to 12 bits, (Input → Reg[0], Reg[0] → Reg[1], ..., Reg[11] → Output) the minimum
combinatorial path will be 0s, (either from Input to D via a splitter, or Q to Output via a splitter)
so our minimum clock cycle equals 𝑡clk-to-q + 0 + 𝑡setup = 25ns.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 28 of 29 CS 61C – Fall 2023

Q11 The Finish Line (1 points)
Everyone will receive credit for this question, even if you leave it blank.

Q11.1 (1 point) How long does it take to “do nothing”?

Solution: ∼45 minutes plus or minus an eternity.

Q11.2 (0 points) If there’s anything else you want us to know, or you feel like there was an ambiguity in
the exam, please put it in the box below.
For ambiguities, you must qualify your answer and provide an answer for both interpretations.
For example, “if the question is asking about A, then my answer is X, but if the question is asking
about B, then my answer is Y”. You will only receive credit if it is a genuine ambiguity and both of
your answers are correct. We will only look at ambiguities if you request a regrade.

Solution:

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 29 of 29 CS 61C – Fall 2023

