Nick Weaver CS 61C Final
Spring 2019 Machine Structures

Note (August 10, 2022): These are extremely rough drafts of rewritten solutions. They definitely
contain errors and unfinished sections, but might have some useful parts for studying.

PRINT your name: ,
(first) (last)

PRINT your student ID:

Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I
am aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic
misconduct will be reported to the Center for Student Conduct and may further result in, at
minimum, negative points on the exam and a corresponding notch on Nick’s Stanley Fubar
demolition tool.

SIGN your name:
You have TODO (1707) minutes. There are 9 questions of varying credit, for a total of 180 points.
For questions with circular bubbles, you may select only one choice.

O Unselected option

@ Only one selected option
For questions with square checkboxes, you may select one or more choices.

l You can select

M multiple squares

Anything you write that you eress-eut will not be graded. Anything you write outside the answer
boxes will not be graded.

If an answer requires hex input, make sure you only use capitalized letters! For example, 0xDEAD
BEEF instead of Oxdeadbeef. You will be graded incorrectly otherwise! Please always add the hex
(0x) and binary (0b) prefix to your answers or you will receive 0 points. For all other bases, do not
add the suffix or prefixes.

Do not add units unless the problem explicitly tells you to!

Final Page 1/23 CS 61C - Spring 2019

Question 1 Potpourri (25 points)

Q1.1 FSE (your favorite search engine) corporation has several datacenters (WSCs) that use an
interrupt-based approach to handling network-interface events. The context switch from
the current process to the interrupt handler takes 15 microsec- onds of overhead, while the
actual handling of the packet takes 45 microseconds. How long does it take us to process
one packet given the interrupt model?

Solution: 60 microseconds

To process a packet, we have to trigger an interrupt, which takes 15 microseconds,
then process the packet, which takes 45 microseconds. 15 + 45 = 60.

Q1.2 The engineers have a new solution that uses polling. Polling has only 1 microsecond of
overhead, and the polling interval is every 60 microseconds. How long does it take us to
process one packet given the new polling model?

Solution: 46 microseconds

To process a packet, we have to wait until the next poll, but the time spent waiting
until the next poll isn’t spent processing a new packet.

We only start processing a new packet when the next poll starts. At that point, we
have to wait 1 microsecond of overhead, then 45 microseconds to process the packet.
1445 = 46.

Q1.3 If there is no network traffic, what percentage of the CPU will be spent polling?

Solution: 1.66% or (1/60) x 100

There’s no network traffic, so we don’t need to consider the time to process a packet.
We just poll every 60 microseconds, only to discover that there’s nothing to process.

In every 60 microseconds, we spend 1 microsecond of overhead polling. That’s 1/60
of the total CPU time spent processing. We multiply by 100 to express the fraction
of time as a percent.

Final (Question 1 continues...) Page 2/23 CS 61C - Spring 2019

(Question 1 continued. ..)

Q1.4

Q1.5

The engineers have another, slightly more complicated solution that uses interrupts and
polling. Here, the first arriving packet generates an interrupt with 15 microseconds of
overhead, and the next 4 packets (which are guaranteed to have arrived) can be polled
with a 1 microsecond overhead each. Assume processing cannot happen in parallel. What
is the average time to process a single packet in this new model? Leave your answer
unsimplified.

Solution: (15+4 x 1+ 5 x 45)/5 = 48.8 microseconds

We have to take a weighted average of the different cases.

Case A, interrupt: interrupt overhead time, plus processing time = 15 4 45

Case B, polling: polling overhead time, plus processing time = 1 + 45

In every set of 5 packets, 1 packet follows Case A, and 4 packets follow Case B. The
weighted average looks something like:

1(15+45) + 2(1 + 45) = 48

The expression in the original solutions follows pretty similar logic. In a set of 5
requests, we have to wait 15 microseconds for one interrupt, 4 x 1 microseconds for 4
polls, and 5 x 45 microseconds for 5 packets to be processed. This is the total time for
processing 5 packets. We divide by 5 to get the average time of processing 1 packet.

FSE really appreciates your help with fixing their networking stack, but now they are
looking to do some hardware upgrades and it is up to you to analyze if the upgrades are
worthwhile!

As a datacenter, YFSE spends 4 MW (Mega Watts) on compute, 2 MW on networking, 2
MW on storage to serve their customers. They also spend 2 MW on cooling, and 1 MW
on power and other sources.®

What is the current PUE? Simplify to a fraction of the from A/B where A and B are
single integers.

Solution: 11/8

PUE is the total power used, divided by the power used on actual computing equip-
ment.

This datacenter uses 4+ 2+ 2+ 2+ 1 =11 MW in total.

This datacenter uses 4 + 2 + 2 = 8 MW for computing. (The question notes that
networking and storage, in addition to computing, is considered useful work.)

“We consider networking and storage as “useful work”.

Final (Question 1 continues...) Page 3/23 CS 61C - Spring 2019

(Question 1 continued. ..)

Q1.6 If the new networking hardware uses 1/2 the power of the old networking hardware, what
will the new PUE be? Simplify to a fraction of the from A/B where A and B are single
integers.

Solution: 10/7
Same calculation as the previous subpart, but we replace 2 MW on networking with
1 MW on networking.

The datacenter uses 44+1+2+4+2+1 =10 MW in total.
The datacenter uses 4 + 1+ 2 =7 MW for computing.

Q1.7 YFSE runs a test program to see how the new system performs. They see the program
spends 3% of its time traversing the network (latency), and 7% of its time actually trans-
ferring (transmission delay).

If the new networking hardware speeds up our network traversal by a factor of 1.5 and
also speeds up transmission by a factor of 1.75, what is the speedup of the test program?
Don’t simplify.

1

0.03 0.07
(1-0.D)+57+77%

Assume the test program takes 1 unit of time to run on unoptimized hardware.

Solution:

On the new networking hardware, 3% of the computation is sped up by a factor of 1.5,
and 7% of the computation is sped up by a factor of 1.75. This leaves 100%—3%—7% =
90% of the computation time unchanged.

In total, the new networking hardware takes 0.9 + % + %
test program.

We divide the 3% and 7% of running times by 1.5 and 1.75 respectively to account for
speedup. (Intuitively, if something is sped up by a factor of 2, it takes half as long to

run, so we would divide the running time by 2.)

units of time to run the

To calculate overall speedup, we divide the unoptimized running time (1 unit of time)
by the optimized running time (which we just calculated above).

Final (Question 1 continues...) Page 4/23 CS 61C - Spring 2019

(Question 1 continued. ..)

Q1.8 FSW has some FPGA based accelerators, so for this custom hardware they are using a
16 bit floating point scheme which works the same as our in-lecture version, except it has
the following breakdown:

Sign: 1 bit, Exponent: 7 bits, Signficand: 8 bits
Represent the given number in our scheme by filling in fields below. If you cannot represent
the number exactly, you should select NOT REPRESENTABLE

—3/64

Solution:

Sign: Obl

Exponent: 00011 1010

Significand: 0b1000 0000
SOLUTION-TODO: Format question blanks
Convert the number to scientific notation:

—3/64=-3x27
= —0bl.1x276 = —0b1.10000000 x 276

Sign bit is 0bl because the number is negative.

Exponent is —6. We encode this by subtracting the bias. The bias isn’t specified
in the question, so we default to —(277! — 1) = —63. Subtracting the bias gives
—6—(—63) = 57. Encoding 57 in 7-bit unsigned binary gives 0b0111010. SOLUTION-
TODO: Is this wrong?

Significant is 0010000000.

1/6

Solution: Not representable

One useful observation about floating point numbers is that since you can always write
them in binary scientific notation, they can always be written in the form of some
integer, multiplied by a power of 2. In other words, if you cannot write a number as
an integer multiplied by a power of 2, then it cannot be represented in floating-point.
1/6 = 1/3 x 27! cannot be represented as an integer multiplied by a power of 2,
because there’s no way to encode the 1/3 as an integer or a power of 2. Therefore,
1/6 can’t be represented in floating-point.

Another way to see this is to note that 1/6 = 0.16666666 . .. is an infinitely repeating
decimal, and floating-point is limited to finite precision. The question says to select
not representable if we cannot exactly represent the number, and floating-point cannot
exactly represent numbers with infinite precision.

Final (Question 1 continues...) Page 5/23 CS 61C - Spring 2019

(Question 1 continued. ..)

Q1.9 Find the average memory access time for a system with the following characteristics. For
partial credit, write the formula. For full credit, simplify your answer. Assume we check
the TLB, then the page table. For this problem, we ignore page faults.

Final

Translation:

TLB Hit Time

Ops*

TLB Miss Rate

20% of accesses

Page Table Hit Time

60 ps

Data Access:

Data Cache Hit Time

10 ps

Data Cache Miss Rate

25% of accesses

Memory Access time

40 ps

ps to access memory.

Solution: 0+ .2(60) + 10 4 .25(40) = 32 ps
We have to compute two AMATS, one for the page table entry (to translate virtual
page number to physical page number), and one for the actual data.

Page table entry AMAT can be read directly off the first table: We always have to hit
the TLB, which takes 0 ps. Then, 20% of the time, we have to pay an extra 60 ps to
check the page table in memory.

Data access AMAT can be read directly off the second table: We always have to hit
the data cache, which takes 10 ps. Then, 25% of the time, we have to pay an extra 40

We add the two AMATS together for the total access time.

Page 6/23

CS 61C - Spring 2019

Question 2 Damon-path (21 points)
SOLUTION-TODO: Attempt to dig up the diagrams.

Q2.1 Which of the options below is the best fit for box I (1) on the previous page? Fill in the
multiple choice bubbles below.

Solution: The new madd instruction needs to read from 3 registers and write to 1
register. This means that we need three read inputs to the Regfile. This eliminates
option (D).

The WriteAddr input to the Regfile is used to identify which register we want to write
to. Writing to the Regfile happens during the write-back stage, so we should use the a
signal from the write-back stage for the WriteAddr input. This eliminates option (B).

If we're executing a non-madd instruction, we can just ignore the output from
ReadData3. This is similar to how we ignore the output from ReadData2 from in-
structions like jal that read from a second register (there’s no rs2). The AND gate
in option (C) may actually cause issues with reading, since during a madd instruction,
the non-zero 5-bit rd gets ANDed with a 1-bit madd value of 1, which may zero out
the top 4 bits of rd. The AND gate also isn’t necessary, since as discussed, we can
just ignore ReadData3 on other instructions. This eliminates option (C).

In summary, we want option (A): We need a third read input, which should read from
rd, and we need a write input that comes from the write-back stage.

Q2.2 Which of the options below is the best fit for box II (2) on the previous page? Fill in the
multiple choice bubbles below.

Solution: In the new madd instruction, we need the ALU to compute R[rd] +
(R[rs1] * R[rs2]). This means that one of our inputs to the ALU should be R[rd]
and the other input should be (R[rs1] * R[rs2]).

None of the answer choices in this subpart have R[rd], so this first input to the ALU
must be (R[rs1] * R[rs2]).

However, we can’t break existing datapath functionality. In the regular datapath, this
box usually has a mux: if ASel is 0, we input R[rs1] into the ALU, and if ASel is 1,
we input PC into the ALU.

Now we want to add an extra condition: If madd is 1, we should input (R[rsi] *
R[rs2]) into the ALU.

Option (A) and (C) are ruled out: If ASel is 1, we input (R[rs1] * R[rs2]), which
breaks existing instructions. (Note that even if madd is 0, we’d still input (R[rs1] *
R[rs2]), breaking existing instructions).

Options (A) and (B) are ruled out: We're only able to input (R[rs1] + R[rs2]), not
(R[rs1] * R[rs2]).

This leaves Option (D), which is correct. It retains the existing datapath logic of
sending in PC if ASel is 1 and R[rs1] if ASel is 0 and madd is 0. However, it adds the
functionality of sending in (R[rs1] * R[rs2]) if madd is 1 (you would then need to
set ASel to 0 for madd instructions).

Final (Question 2 continues...) Page 7/23 CS 61C - Spring 2019

(Question 2 continued. ..)

Q2.3 Which of the options below is the best fit for box III (3) on the previous page? Fill in the
multiple choice bubbles below.

Solution: Continuing from the previous part: for madd instructions, the second input
we need to send to the ALU is R[rd].

Just like before, we cannot break existing datapath functionality. When madd is 0 and
BSel is 0, we should still send R[rs2] to the ALU. When madd is 0 and BSel is 1, we
should still send imm to the ALU.

Option (A) breaks existing functionality: When madd is 0 and BSel is 0, we send R [rd]
to the ALU instead of R[rs2].

Options (B) and (D) will never select R[rd] to send to the ALU. R[rd] would require
the select bits of the mux to be 2 (0b10, but the AND/XOR gates only output a 1-bit
value (since both of the inputs are 1-bit).

This leaves option (C), which matches the existing functionality described above, and
adds one extra case: When madd is 1, we caFill in the correct values for the control
signals below to correctly execute a madd instruction. Assume other control bits have
been done for you and are correct. For ALUSel, please write an operation name (ie.
add) not a numeric value. For RegWEn and WBSel, use integer, decimal numbers.n
send R[rd] to the ALU by also setting BSel to 1 for madd instructions.

Q2.4 Fill in the correct values for the control signals below to correctly execute a madd instruc-
tion. Assume other control bits have been done for you and are correct. For ALUSel,
please write an operation name (ie. add) not a numeric value. For RegWEn and WBSel,
use integer, decimal numbers.

Solution: ALUSel should be add. As described above, we’re using the ALU to com-
pute R[rd] + (R[rs1] * R[rs2]), and we used Box II and Box III to send (R[rs1]
* R[rs2]) and R[rd] to the ALU.

RegWEn should be 1, since we're writing something back to the Regfile.

WBSel should be 1, since we want to write the ALU output back to the Regfile (not
data from memory, and not PC+4).

Final (Question 2 continues...) Page 8/23 CS 61C - Spring 2019

(Question 2 continued. ..)

Q2.5 Given the timing specifications below, calculate the critical path of the new pipelined
datapath.

Solution: 325 ps

We're looking for the longest path between any two clocked elements. (Start a path
at a register output, and end the path at the RegFile write or a register input.)

The longest path in the IF stage starts at the PC register output, passes through
IMEM, and ends at the next pipeline registers. This has a combinatorial delay of 250
ps.

The longest path in the ID stage starts at the pipeline registers, passes through Regfile
(to read values, not write anything), and ends at the next pipeline registers. This has
a combinatorial delay of 150 ps.

The longest path in the EX stage starts at the pipeline registers, passes through Box
IT (or Box III) and the ALU, and ends at the next pipeline registers. This has a
combinatorial delay of 75 + 200 = 275 ps.

The longest path in the Mem stage starts at the pipeline registers, passes through the
DMEM (to read values, not write anything), and ends at the next pipeline registers.
This has a combinatorial delay of 250 ps.

The longest path in the write-back stage starts at the pipeline registers, passes through
a mux, and ends at the RegFile (for writing). This has a combinatorial delay of 25 ps.

The longest combinatorial delay is in the EX stage, with 275 ps.

The total clock period time for this circuit is the clk-to-q delay, plus the longest
combinatorial delay, plus the setup time, which is 30 + 275 + 20 = 325 ps.

In other words: When the clock has a rising edge, we wait 30 ps (clk-to-q delay) for the
signal to appear at the register outputs. Then we wait for the longest combinatorial
delay to finish (275 ps EX stage). Then, we have to wait another 20 ps (setup time)
for the signal to stabilize at the next register input before the next rising edge can
happen.

Final Page 9/23 CS 61C - Spring 2019

Question 3 Virtual Memory (15 points)
Assume we’re working on a machine which has the following parameters:
e 16GiB of physical memory
e 22 bit virtual addresses
e 128B pages
e Each PTE in our single level table is 4B

Q3.1 How many bits are in the Physical Address Offset?

Solution: 7 bits
Each page (whether virtual or physical) is 128 bytes. We need 7 bits to uniquely find
one byte within this page.

Q3.2 How many bits are in the PPN? the VPN?

Solution: VPN = 15 bits, PPN = 27 bits

The number of offset bits (7) is the same for both virtual and physical addresses (since
the page size is the same).

Virtual addresses have 22 bits. 7 of those bits are used for the offset, leaving 22—7 = 15
bits for the VPN.

We have 16 GiB = 23* bytes of physical memory, so we need 34-bit physical addresses
to uniquely identify each byte of physical memory. 7 of those bits are used for the
offset, leaving 34 — 7 = 27 bits for the PPN.

Consider the following snippet of code. Assume the following:

e Arrays begin on page boundaries.
e We have a function initialize that creates an array containing size integers.
e A starts at 0x20000 and B starts at 0x30000

e sizeof (int) ==

int size = 256;

int32 t *A = initialize(size);

int32 t *B initialize(size);

for (int i = 0; i < size; i += 32) {
B[i] = Blsize - i - 1] * A[i];

}

For the following parts, assume “data pages” refers only to pages containing elements of A and
B (ie. not pagetable pages). Remember that we have 128B pages and each PTE is 4B.

Final (Question 3 continues. ..) Page 10/23 CS 61C - Spring 2019

(Question 3 continued. ..)

Q3.3 How many unique DATA pages does this access pattern traverse?

O 0 pages O 12 pages
O 2 pages O 13 pages
O 3 pages @ 16 pages
O 8 pages

Solution: A is 256 elements, and each element is 4 bytes, for a total of 1024 bytes. B
is also 1024 bytes by the same logic.

Each page is 128 bytes, so A takes up 8 pages of memory. Likewise, B takes up 8 pages
of memory by the same logic.

Each page is 128 bytes, and each element is 4 bytes, so 32 elements of the array fit on
each page.

This loop accesses every 32nd element of A (e.g. A[0], A[32], etc.). This loop also
accesses every 32nd element of B. This means that we eventually need to access every
page of both arrays in memory, for a total of 8 + 8 = 16 pages.

(The accesses to B[size - i - 1] don’t really change the answer to these questions,
because we end up having to access every page of B anyway.)

Final (Question 3 continues...) Page 11/23 CS 61C - Spring 2019

(Question 3 continued. ..)

Q3.4 How many unique NON-DATA, NON-CODE pages does this access pattern traverse? (ie.
page table pages)

O 0 pages O 12 pages
@ 2 pages O 13 pages
O 3 pages O 16 pages
O 8 pages

Solution: Faster intuitive answer: All 8 PTEs for A fit on one page, and all 8 PTEs
for B (whose address is really far away from A) fit on a different page.

More comprehensive answer: As mentioned in the previous subpart, array A takes up
8 pages of memory. This means that A has 8 VPNs that we need to translate to 8
PPNs. This means that we need 8 PTEs to map each of the 8 VPNs to 8 PPNs. The
same logic applies to B, so we need 16 PTEs in total.

First, note that pages are 128 bytes, and each PTE is 4 bytes, so we can fit 32 PTEs
on each page. However, this does not mean that all 16 PTEs are located in the same
page in memory.

To find where the 16 PTEs live in memory, we need to check their VPNs (since we
use the VPN to index into the page table in memory).

From the previous part, A is 1024 = 0x400 bytes long. This means that A takes up
memory addresses from 0x20000 to 0x20400.

Converting virtual addresses to binary, we get that 0x20000 = 0b00 0010 0000 0000
0000 0000 and 0x20400 = 0b00O 0010 0000 0100 0000 0000.

The VPN is the top 15 bits, so the virtual page numbers that hold the array A are 0b000
0100 0000 0000 and ObO0O0O 0100 0000 1000. (Aside: These two numbers differ by
0b1000 = &, which confirms that we needed 8 pages of memory for the array.)

By the same logic, we can extract the virtual page numbers of B. Converting to binary,
we get that 0x30000 = 0b00 0011 0000 0000 0000 0000 and 0x30400 = 0b0OO 0011
0000 0100 0000 0000.

The VPN is the top 15 bits, so the virtual page numbers that hold the array B are
0b000 0110 0000 0000 and 0b0OOO 0110 0000 1000.

Note that the VPNs for A and B differ by around 0b000 0010 0000 0000 = 2°. This
means that the PTEs for A and the PTEs for B are around 2° PTEs away from each
other in memory. This is much further than the 32 PTEs that fit on one page, so the
PTEs for A and the PTEs for B must live on different pages.

In summary: A has 8 PTEs that all live on one page in memory. B has 8 PTEs that
all live on some different page in memory.

Final (Question 3 continues...) Page 12/23 CS 61C - Spring 2019

(Question 3 continued. ..)

Q3.5 Suppose this process has a single-level page table that starts out empty and we run through
this access pattern. How much space would the page table take in memory? Give your
answer in units of PAGES (NOT BYTES).

Solution: Regardless of access pattern, we need to store the entire single-level page
table in memory. SOLUTION-TODO: Pretty sure this is fine, but double-check it.

The page table maps every VPN to a PPN. (In other words, each VPN has its own
PTE.)

The VPN is 15 bits long, so we have 2! different VPNs. This means we have 2'°
different PTEs.

Each PTE is 4 bytes, so the page table is 2'° x 4 = 217 bytes.

Each page is 128 = 27 bytes, so we need 2!7/27 = 210 pages to store the entire single-
level page table.

Final Page 13/23 CS 61C - Spring 2019

Question 4 Nick Goes Nuclear - Atomics (17 points)
In class you learned about OpenMP and got to experience speedups on the Hive Machine. How-
ever after your time in 61C you developed a deep-seated hatred for X86 and have determined
that you want to employ OpenMP on RISC-V machines using atomic instructions.

You decide to start small and you seek to implement the following parallelization of summing
a loop.

int sum = 0;

#pragma omp parallel for {
for (int 1 = 0; i < n; i++) {
#pragma omp critical

sum += A[i];

When executing the for loop, each thread holds its local starting and terminating byte offset in
t0 and t1 respectively. You store the address of sum in s1 and the address of A in s2. Now you
are tasked with implementing the actual sum update. You develop the following code which
WORKS:

loop start:
beq t0 t1 end
add t2 s2 t0
1w t2 0(t2)
retry:
lr.w t3 (s1) # Load sum and place our reservation
add t3 t3 t2
sc.w t4, t3 (s1)
bne t4 x0 retry # Check if our store failed
addi tO t0 4
j loop start

Q4.1 Your friend, however, took 61C back in Fall 2017, so he only understands amoswap. Your
friend asks if you could reimplement the same piece of coding using amoswap instead,
without needing any values other than those in t0, t1, s1, and s2. Is this possible? Why
or why not?

O Yes ® No

Solution: To increment the sum atomically using amoswap you need to already know
the old value of sum (otherwise you cannot replace it with the incremented value).
This requires another atomic access for the read, most likely through a lock.

Q4.2 SOLUTION-TODO: Typeset the rest of the question, but this isn’t in scope for SU22 so
who cares for now.

Final Page 14/23 CS 61C - Spring 2019

Question 5 SIMD (26 points)
Eh too lazy for this one sorry.

Final Page 15/23 CS 61C - Spring 2019

Question 6 C Reading (16 points)
SOLUTION-TODO: Transcribe stuff.
Q6.1 SOLUTION-TODO: Transcribe stuff. I mainly wanted to get this fucking 3 year old typo
fixed.

Solution: Line 6 is wrong. * arr + i should be *(arr+i). Without parentheses,
the dereference operator takes precedence over addition, so we would first compute
xarr to get the value of the first element in the array, then add i to the value of the
first element in the array. However, what we actually want here is the value of the
ith element of the array. Therefore, we should take the address arr, add i to find the
address of the ith element, and then dereference the address (arr+i) to get the ith
element of the array.

Line 7 is wrong. We're comparing pointer, which is an address, to "STOP", which is
the address of a hard-coded static string in memory. This will only return true if the
two addresses are the same (i.e. both are pointing at the same string in memory). How-
ever, what we actually want here is to check that the string that pointer is pointing
at is the string STOP. We can replace this line with something like strcmp(pointer,
"STOP") instead.

Line 9 is wrong. init_size == i - 1 should be something like i == init_size -
1. This expression is checking when we need to reallocate space in the output array.
If we wait until init_size == i - 1, we could have a case where init_size = 8 (i.e.

output has space for 8 pointers), but i = 9 (i.e. we're about to access the 9th element
of the output array at Line 13).

Line 11 is wrong. realloc returns the address of the resized array, which is not
necessarily the same as the address of the original array. We need to assign the result
of realloc back to output so that output is pointing at the newly-reallocated array.
Something like output = realloc(...) works, where the arguments to realloc stay
the same.

Line 13 is wrong. strlen doesn’t count for the null terminator. When we make
space for the string, we need to add 1 to make space for the null terminator. For
example, the string hello takes 6 bytes in memory, but strlen("hello") would
return 5. Something like output [i] = malloc(sizeof (char) * (strlen(pointer)
+ 1)) would work.

Q6.2 SOLUTION-TODO: Transcribe, are we splitting up this part?

Solution: arr[0] is the address of some string. The question doesn’t specify where
strings are being stored, and strings could be in heap, stack, or static memory. Strings
can’t be in code, because that’s where we put the actual instructions of the program.

"STOP" is a hard-coded string stored in static memory.

output [0] was assigned to the return value of malloc on Line 13, so it’s a pointer to
the heap.

output is a local variable stored on the stack, so &output is an address on the stack.

parse message is a function, whose instructions are stored in the code section.
&parse message is the address of the instructions in the code section.

Final Page 16/23 CS 61C - Spring 2019

Question 7 Go Go Power Potpourri (21 points)
Eh, too lazy for this one, sorry.

Final Page 17/23 CS 61C - Spring 2019

Question 8 Gotta Cache ’em All (19 points)
Consider a 8-way set associative cache with 64 B blocks, and 64 total blocks as part of a 16 bit

physical address
Q8.1 Given the machine specs above, how big is each field?

Tag

Solution: 7 bits
The index and offset use up 3 + 6 = 9 bits (see next parts). The address has 16 bits.
This leaves 16 — 9 = 7 bits for the tag.

Index

Solution: 3 bits
From the question, there are 64 blocks. The cache is 8-way set associative, so there
are 8 blocks in each set. This means there are 64/8 = 8 sets in the cache.

We need 3 bits to uniquely identify one of the 8 sets in the cache.

Offset

Solution: 6 bits
From the question, each block is 64 bytes. We need 6 bits to uniquely identify one of
the 64 bytes.

Final (Question 8 continues...) Page 18/23 CS 61C - Spring 2019

(Question 8 continued. ..)

Now imagine we use the same cache on the following RISC-V code:

.data:
arr: .byte 0, 1, 2 , ... 255 # All values from O to 255
.text:
ASSUME A WORKING PROLOGUE
la a0 arr
1i a1l 256
#Scramble randomizes the elems of arr
jal scramble
Assume tO = 0, t1 = 256, sO = A, s1 =B, s2 =2C
START OF HIT RATE
Start:
beq tO t1 End # Iterate 256 times
add t2 a0 tO
lbu t2 0(t2) # t2 = arr[tO]
add t3 sO t2

1w t3 0(t3) # t3 = A[t2]
add t4 s1 t2
1w t4 0(t4) # t4 = B[t2]

add t3 t3 t4
add t4 s2 tO
sw t3 0(t4) # C[t0] = t3 + t4
addi tO tO0 1
j Start
END OF HIT RATE
End:
ASSUME A WORKING EPILOGUE

Let scramble be a function that randomly sorts the elements of an array. Additionally assume
that:
e A is located at 0x1000
B is located at 0x2000
C is located at 0x3000
e arr is located at 0x4000
Our cache is empty when reaching # START OF HIT RATE

Final (Question 8 continues...) Page 19/23 CS 61C - Spring 2019

(Question 8 continued. ..)

Q8.2 What is the best case hit rate for this code? Write your answer as a fraction.

Solution: 63/64

Start by thinking about what this code is doing. In the ith iteration of the loop, we
get the ith element of arr. In other words, we access arr sequentially. We know
that arr is a scrambled list of numbers from 0 to 255, so we’ll get a random number
between 0 and 255. Call this random number k. Then we access A[k] and B[k]. In
other words, we access a random element of A and B. Then we access C[i]. In other
words, we access C sequentially.

Now, consider the first iteration of the loop. First, we access arr [0]. This brings the
first 64 bytes = 64 elements in arr into the cache. Now, we make a random access
to A[k], which causes us to bring a block of 64 bytes = 64 elements of A into the
cache. If we access B[k], we bring in another block of 64 bytes = 64 elements into the
cache. Finally, we access C[0], which brings the first 64 bytes = 64 elements in C into
the cache. (Note that all the arrays in this question are byte arrays, because RISC-V
indices memory in bytes and we never multiplied offsets by 4 or any other variable
size.)

After the first iteration of the loop, we have the first block of arr, the first block of C,
some block of A, and some block of B in the cache. The cache is 8-way set associative,
so there can’t be a conflict miss yet (we only brought in 4 blocks so far).

Now, consider how much the cache can fit before we have to start kicking blocks out.
Each array is 256 elements = 4 blocks long. Each array starts at a cache-aligned
boundary (the addresses 0x1000, 0x2000, 0x3000, 0x4000 all have index bits 0b000
and offset bits 0b0000000). In other words, we can bring an entire array into the cache
by putting 4 blocks at indices 0, 1, 2, and 3.

Each index can fit 8 blocks (since the cache is 8-way set associative), and we have 4
arrays. This means that all 4 arrays can fit entirely in the cache. Index 0 will have
block 0 of each array, index 1 will have block 1 of each array, index 2 will have block
2 of each array, and index 3 will have block 3 of each array.

Since all 4 arrays fit entirely in cache, we never have to kick any blocks out. Once a
block is brought into the cache, it stays in the cache until the end of the program.
This means that the best-case and worst-case hit rate follow the same pattern; no
matter what order you do it, you eventually need to bring all the blocks into the
cache. Each block has 64 elements that you access exactly once (again, regardless of

order). You miss on the first element and hit on the next 63 elements. This gives the
hit rate of 63/64.

Q8.3 What is the worst case hit rate? Write your answer as a fraction.

Solution: 63/64
See solution to the previous part.

Final (Question 8 continues. ..) Page 20/23 CS 61C - Spring 2019

(Question 8 continued. ..)

Q8.4 Now assume that we can modify the associativity without changing any other property.
What is the minimum associativity for which the best case hit rate can equal the best case
hit rate with 8 way set associative?

O 1l-way (Direct Mapped) O 8-way
® 2-way O 16-way
O 4-way O Fully Associative

Solution: Important observations from the previous part: each array is 4 blocks
long, and there are 4 arrays. The best-case hit rate involved a 64-element block being
brought in (1 miss) and every element being used exactly once (63 hits). Each element
is accessed once, so after the block is entirely used, we can safely kick the block out
of the cache without affecting hit rate.

In the first iteration of the loop, we bring in the first block of arr (index 0). Also, we
have to bring in the first block of C (index 0). If the cache were direct-mapped, the C
block would kick out the arr block, even though we haven’t used all the elements of
the arr block yet. This would affect hit rate, so the cache cannot be direct-mapped.

If the cache is 2-way set associative, then we could keep both arr and C blocks in the
cache. Now we can’t bring in the first block of A or B, since that would kick out a
block (arr or C) that we haven’t fully used yet. However, in the best case, we could
bring in a different block A and B, putting the blocks in a different index of the cache.

After the first iteration in the best case, we have the first block of arr and C in the
cache. We also have some block (not the first block) of A and B in the cache.

Consider the next 63 iterations. In the best case, we keep hitting random elements of
A and B that are in the block we brought in, creating the 63 hits. We also access all
the elements of the first blocks of arr and C. Now, we’ve used up all 4 blocks currently
in cache, so we can safely kick them out without affecting hit rate.

In the next set of 64 iterations, we put blocks of arr and C in index 1 of the cache. In
the best-case, the next accesses of A and B are all at some other index, causing blocks
of A and B to appear at a different index in the cache.

In summary: We can use a 2-way set associative cache, relying on the best-case scenario
where the ith iteration of the loop never tries to bring in A[i] and B[i] (as this would
kick out arr[i] or C[i]).

Final Page 21/23 CS 61C - Spring 2019

Question 9 SDS (20 points)
Q9.1 SOLUTION-TODO transcribe

Solution: The longest combinatorial logic path is between any two timed elements.
Registers are always timed elements, and in this question, we also assume that in-
puts are timed elements (their values arrive on the rising edge of the clock). (This
assumption doesn’t change the solution to this subpart though.)

Tracing out paths between registers shows that the longest path starts at Regl, passes
through the XOR gate, goes down and through the AND gate, down and through the
OR gate, then up and through the OR gate, before arriving at Reg?2.

Q9.2 SOLUTION-TODO transcribe

Solution: 31 ps

The combinatorial path has delay 6 +5 + 6 + 6 = 23 ps.

When the clock has a rising edge, we have to wait 5 ps (clk-to-q time) for the register
output to change (since the critical path starts at a register, not an input). Then, we
wait 23 ps for the combinatorial logic to propagate. Then, we wait 3 ps (setup time)
for the signal to stabilize at the next register input.

In total, this is 23 +5 + 3 = 31 ps.

Q9.3 SOLUTION-TODO transcribe

Solution: 25 GHz

Remember that frequency and period are inverses, i.e. f=1/pand p=1/f.

Also recall that a picosecond is 10~'2 seconds, and a gigahertz is 10° hertz.

From the previous subpart, we need to choose a frequency such that the corresponding
period is at least 31 ps to meet the timing requirements.

If the frequency is 100 GHz = 100 x 10° = 10'! Hz, then the period is 10! seconds
= 10 x 1072 seconds = 10 ps. This is too short.

If the frequency is 50 GHz, the frequency has halved, so the clock period (the inverse)
will double. Intuitively, if the clock ticks half as often, then the time between ticks is
twice as long. (You could also replicate the math in the previous subpart if you don’t
want to use this shortcut.) Therefore, the period is 20 ps, which is still too short.

If the frequency halves again to 25 GHz, the clock period doubles again to 40 ps, which
is greater than 31 ps and thus satisfies the timing requirement.

Q9.4 TODO-SOLUTION the NAND logic stuff

Final (Question 9 continues...) Page 22/23 CS 61C - Spring 2019

(Question 9 continued. ..)

Q9.5 TODO-SOLUTION transcribe

Solution: In words: Reg2 and Reg3 start undefined (we don’t know their output
values). The clock has a rising edge. 25 ps (clk-to-q delay) later, Reg2 gets an output
value.

The combinatorial logic delay is 10 ps (2 gates), so after another 10 ps, the input to
Reg3 changes and stays there until the next clock rising edge. (We know that this all
happens within 1 clock cycle, because the period of 100 ps is more than the clk-to-q
+ delay + setup time).

The clock has another rising edge. After another 25 ps (clk-to-q delay), Reg3 gets an
output value.

Options (A) and (D) are eliminated because Reg3 is not known until after the second
rising edge. However, these options draw Reg3 as being known after the first rising
edge.

Options (B) and (C) only differ in what value Reg3 takes on on the second rising edge.
Checking the waveform in the first clock cycle, Input_D is 0 and Reg2_output is 0.

The circuit computes XOR(AND(Reg2_output, Input D), OR(Reg2_output, In-
put_D)).

Plug in values to get XOR(AND(0, 0), OR(0, 0)).
Simplify to get XOR(0, 0) = 0.
On the second rising edge, Reg3 should output 0, not 1. This is option (B), not (C).

Final Page 23/23 CS 61C - Spring 2019

