McMahon, Weaver

Spring 999 CS 61C Final

PRINT your name: ,
(last) (first)

PRINT your student ID:

You have 170 minutes. There are 8 questions of varying credit (100 points total).

Question: |1 |2| 3 | 4|5 | 6 |7]| 8 | Total

Points: 68|30 |10| 11 |11 |9 | 15| 100

For questions with circular bubbles, you may select only one choice.
QO Unselected option (completely unfilled)
@ Only one selected option (completely filled)

For questions with square checkboxes, you may select one or more choices.

O You can select

B multiple squares (completely filled)

Anything you write that you eress-eut will not be graded. Anything you write outside the answer boxes
will not be graded.

If an answer requires hex input, make sure you only use capitalized letters! For example, 0OXDEADBEEF
instead of Oxdeadbeef. Please include hex (0x) or binary (0b) prefixes in your answers unless otherwise
specified. For all other bases, do not add any prefixes or suffixes.

Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I am aware
of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will be
reported to the Center for Student Conduct and may further result in, at minimum, negative points on
the exam and a corresponding notch on Nick’s Stanley Fubar demolition tool.

SIGN your name:

Page 1 of 22

This content is protected and may not be shared, uploaded, or distributed.

Q1 True/False (6 points)

Q1.1 (1 point) TRUE or Farse: All RISC-V instructions are 4 bytes long, which is why the immediates
for B-type and J-type instructions each have two implicit 0s.

O True O FarLse

Q1.2 (1 point) TRUE or FALSE: Most computers natively use a little-endian data encoding.

O True O FaLse

Q1.3 (1 point) TRUE or FALSE: The last step of the CALL process, the loader, is part of the operating
system and is responsible for correctly starting a program.

O True O FarLse

Q1.4 (1 point) TRUE or FALSE: System calls (such as the ecall instruction in RISC-V) are executed by
the program itself.

O True O FALsE

Q1.5 (1 point) TRUE or FALSE: Even with a direct memory access (DMA) controller, the CPU is required
to initiate a memory transfer.

O TruE O FaLsE

Q1.6 (1 point) TRUE or FALSE: In warehouse scale computing, water can be used as an alternative to air
to cool machines and infrastructure.

O True O FaLse

Final Page 2 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

Q2 Short Answer (8 points)

Q2.1 (2 points) Translate the following RISC-V instruction into its corresponding 32-bit hexadecimal
value.

sb t3, 31(t3)

0x

Q2.2 (2 points) Simplify the following Boolean expression. For full credit, your solution must use at
most 3 boolean operators (OR, AND, NOT).

I(A+!4)B + (CD)) + CD

The DOGGO 61C midterm consists of short-answer and long-answer questions. Grading all submissions
for the midterm is done in two steps.

First, the midterm is preprocessed by the exam TAs. It would take 1 hour to sequentially preprocess
all submissions, but this is infinitely parallelizable.

Then, once preprocessing is done, all TAs (including exam TAs) participate in grading. Each question
must be graded fully by a single TA (to maintain consistent grading over all submissions). For example,
if Justin grades Q1 for a submission, he must grade Q1 for all submissions; no other TA may grade Q1
for any other submission.

Question type | Number of questions | Time to grade one question across all submissions

Short-answer 40 50 minutes

Long-answer 10 250 minutes

Total: 4500 TA-minutes

Q2.3 (1 point) This class has 10 TAs, 5 of whom are exam TAs.

In the best-case scenario, how many minutes would it take us to grade all submissions? Round
your answer to the nearest minute, if needed.

Q2.4 (1 point) Noting that this would take too long, we decide instead to hire all 7 billion people on
Earth as TAs to help grade the midterm. As before, we still have only 5 exam TAs.
In the best-case scenario, how many minutes would it now take us to grade all submissions? Round
your answer to the nearest minute, if needed.

Q2.5 (2 points) One of the hive machines shuts down unexpectedly. After investigating, the TAs
conclude that during the past 100 days, this hive machine encountered 6 failures, and each failure
took 12 hours to repair. What is the availability of this hive machine over the last 100 days? Express
your answer as a reduced fraction.

Final Page 3 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

Q3 Decisions, Decisions (30 points)
For each of the following pairs of alternatives, write one advantage that each alternative has over the
other, or “none” if none exists.

These questions are open-ended and don’t necessarily have one correct answer. Credit will be awarded
for reasonable responses, even if it doesn’t match the staff solution. One sentence per box is sufficient
for full credit.

Q3.1 (3 points)

A 32-bit
IEEE-754
standard
floating
point
number

A 32-bit
two’s
complement
integer

Q3.2 (3 points)

C

Python

Final (Question 3 continues...) Page 4 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued...)

Q3.3 (3 points)

A
dynamically
linked
library

A statically
linked
library

Q3.4 (3 points)

A RAID-0
array with 5
2TB disks

A RAID-5
array with 5
2TB disks

Q3.5 (3 points)

Polling

Interrupts

Final (Question 3 continues...) Page 5 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued...)

In each of the following subparts, two implementations for the given behavior are provided. For each
pair of implementations, select which implementation is incorrect (does not match the given behavior),
or if neither is incorrect (both match the given behavior). It is guaranteed that at least one of each
pair is correct.

« If you select that one implementation is incorrect, provide an example where it fails to produce
the expected behavior.
« If you select that neither is incorrect, write one advantage for each implementation. If an

implementation has no advantage over the other, write “none”.

As before, these questions don’t necessarily have one correct answer. Credit will be awarded for
reasonable responses, even if it doesn’t match the staff solution. 1-2 sentences per box is sufficient for
full credit.

Q3.6 (3 points) Given behavior: A function that returns a string "Hello".

A B
char* returnHello() { | char* returnHello() {
return "Hello"; // Assume malloc succeeds.
} char* data = malloc(sizeof(char) * 6);
// Correctly copies the string to data,
// including NULL terminator.
strncpy(data, "Hello", 6);
return data;
}
O Aisincorrect O Bisincorrect QO Neither is incorrect
(i.e. both are correct)
Final (Question 3 continues...) Page 6 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued...)

Q3.7 (3 points) Given behavior: A function that takes the absolute value of a number.

Q3.8

A B
#define abs(x) x < 0 ? -x : X int abs(int x) {
return x < 0 ? -x : X;
}
O Aisincorrect O Bis incorrect O Neither is incorrect

(i.e. both are correct)

(3 points) Given behavior: A function to return the square of a number.

A B
square: square:
mul t0 a0 a0 mul sO0 a0 a0
mv a0 tO0 mv a0 sO
ret ret
O Aisincorrect O Bisincorrect QO Neither is incorrect
(i.e. both are correct)
Final (Question 3 continues...) Page 7 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

(Question 3 continued...)

Q3.9 (3 points) Given behavior: A circuit that takes the logical AND of 4 inputs.

A B
INL[_H INL[_H

N2 [H IN2 [}
IN3|]—_>-|- o IN3[H _}DOUT
uT

IN4[] IN4 [}

O Ais incorrect O Bis incorrect O Neither is incorrect
(i.e. both are correct)

Q3.10 (3 points) Given behavior: A function that sets an array (of the given length) to all 0s.

A B
#define length (1 << 20) #define length (1 << 20)
// Assume correct imports // Assume correct imports
void setToZero(int* data) { void setToZero(int* data) {
omp_set_num_threads(8); // The following whitespace is
#pragma omp parallel // intentional.
{
int i = omp_get_thread_num(); int i = 0;
for (; i < length; i += 8) { for (; i < length; i++) {
data[i] = 0; datal[i] = 0;
} }
} }
}
O Aisincorrect O Bisincorrect QO Neither is incorrect
(i.e. both are correct)
Final Page 8 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

Q4 Deci-sion (10 points)
So far in this class, we have discussed IEEE-754 standard binary floating point numbers. IEEE-754 also
specifies a separate decimal floating point standard, often used in financial calculations. The exact
storage method of this standard is fairly complicated, so for now, we will consider a simplified version
of this standard, without regards to the underlying binary value:

A decimal floating point number stores 1 sign bit, an exponent, and a significand:

The exponent is an integer in [—95, +96]. The significand is a 7 digit decimal integer. If the stored
exponent is X and the significand is ABCDEFG (where A-G are digits between 0 and 9 inclusive),
then the represented value is:

(—1)sienbit x A BODEFG x 10%

For example, if the sign is positive, the exponent is 8, and the significand is 0005256, the represented
value is 0.005256 x 10% = 525600. This system does not have an implicit one or denormalized numbers.
For the purposes of this question, we will not consider representations of infinities and NaNss.

Q4.1 (3 points) What problem would occur if our floating point system used an implicit one (i.e. repre-
sented 1. ABCDEFG x 10% instead)? Write your answer in 10 words or fewer.

Q4.2 (2 points) Find two distinct representations of the number 61 in this decimal floating point system
(give the exponent and significand).

Exponent 1: Significand 1:

Exponent 2: Significand 2:

Q4.3 (3 points) How many distinct representations exist for 0 in this system?

Q4.4 (2 points) Which of the following numbers can be represented exactly by our decimal floating
point standard, but not by the IEEE-754 standard single precision (32 bit) floating point standard?

Select all that apply.
O o1 O o8 O 232 = 4,294,967,296
O 1=0.333333... 01 O 10%
O 0.5 O 108 O None of these
Final Page 9 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

Q5 Push-Pops (11 points)
We want to implement two new instructions:

push rs2: Put the word stored in rs2 on the stack, decrementing the stack pointer as necessary.
pop rd: Set rd to the bottom-most word of the stack, and remove that element from the stack.

It is undefined behavior to call push sp or pop sp.

We first decide to implement push and pop as pseudoinstructions.

Q5.1 (2 points) Write a two-instruction sequence that implements push rs2.
Your instructions can use rs2.

Q5.2 (2 points) Write a two-instruction sequence that implements pop rd.
Your instructions can use rd.

Final (Question 5 continues...) Page 10 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued...)

Instead of implementing them as pseudoinstructions, we decide to modify our datapath to make them
proper instructions that run in one cycle of a single-cycle datapath.

For this question, we will make modifications to the RISC-V datapath included in the CS 61C Reference
Card. In order to implement push and pop, we decide to modify our immediate generator so that
setting the ImmSel control signal to 7 always outputs an immediate with value 4.

Q5.3 (3 points) What further changes would we need to make to our datapath in order for us to
implement the push instruction with as few changes as possible? Select all that apply:

[0 Add anew instruction format

Add a second new immediate type for the InmGen

Add a new output to Regfile for a third register value

Add a second writeback input to Regfile, along with a second RegWEn

Add a new input to AMux, with the relevant selectors

Add a new input to BMux, with the relevant selectors

Add a new ALU input for a third register input

Add a new ALU operation, with a corresponding ALUSel

Add a mux before the DMEM address input, including relevant inputs and selectors

Add a new input to WBMux, with the relevant selectors

O O O 0o oo oo o a4

No further changes are needed to the datapath, beyond adding additional control logic

Final (Question 5 continues...) Page 11 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued...)

Q5.4 (3 points) What further changes would we need to make to our datapath in order for us to
implement the pop instruction with as few changes as possible? Select all that apply:

O Add anew instruction format

Add a second new immediate type for the InmGen

Add a new output to Regfile for a third register value

Add a second writeback input to Regfile, along with a second RegWEn
Add a new input to AMux, with the relevant selectors

Add a new input to BMux, with the relevant selectors

Add a new ALU input for a third register input

Add a new ALU operation, with a corresponding ALUSel

Add a mux before the DMEM address input, including relevant inputs and selectors

O O O Oo 0O o o o 0O

Add a new input to WBMux, with the relevant selectors

O No further changes are needed to the datapath, beyond adding additional control logic

Q5.5 (1 point) Assuming the above changes were implemented, what hazards can be caused by push if
we use the standard 5-stage pipeline included in the CS 61C Reference Card?

O Data hazard
O Control hazard
O Both data and control hazards

(O Neither data nor control hazard

Final Page 12 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

This page intentionally left (mostly) blank.

Please do not tear off any pages from the exam.

Final Page 13 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

Q6 Fun with Primes

(11 points)

The Sieve of Eratosthenes is an algorithm that can be used to determine a list of prime numbers. A full

explanation of the algorithm is provided in the Detailed Explanation box below.

The below function implements this Sieve, and is defined as follows:

Input: An integer n. You may assume that n > 0.

Output: An array of n 1-byte integers. The ith element of this list is 0 if ¢ is prime, and 1 otherwise.

1 char* primelist(uint32_t n) {

2 char* primes = <BLANK 1>;

3 if (<BLANK 2>) return NULL;

4 primes[0] = 1;

5 primes[1] = 1;

6 for (int i =2; 1 * i < n; i++) {

7 if (!primes[i]) { // If i is a prime number,

8 for (int j =2 * 1i; j <n; j += 1) {

9 primes[j] = 1; // Cross out all multiples of i

10 }
11 }
12 }
13 return primes;
14 1}
Detailed Explanation:

For each index of the array, we check to see if this index is a prime number. If it is not a prime
number, we move to the next index. If it is a prime number, we know that every number that is
a multiple of this number is not prime, so we mark the corresponding indices as not prime. An
example of running this algorithm with input n = 12 is shown below:

Start [X|2[3|4|5|6|7|8|9]| 10| 11 | 0and 1 are nonprime
=2 [280X| 2|3 [X]|5 |7 |[X]9 >3] 11 | Cross out all multiples of 2
i=3[2803| 2|3 [X|5 |7 [X[>X|>]| 11 | Cross out all multiples of 3
i 4 |BCIK| 2 |3 [K| 5 [>6C| 7 |>&|>K || 11 | 4isn’t prime, continue
=5 28X 2|3 |X|5 || 7 ||| 11 | Cross out all multiples of 5
=6 280X 2|3 |X|5 X7 |>X|X|| 11 | 6isn’t prime, continue

When we actually implement it in C code, we use 0 to represent prime and 1 as nonprime, so the
array itself looks like this after running the full program:

i 0112|3456 |7]8]9]10|11
primes[i] |1 |1|0|O0|1]O0|1|O0|1]|1| 1] O

Note that in the above example, no changes occur after the i = 3 iteration. In the code above, we
only iterate up to the y/nth iteration of the loop (because every composite number has at least one
factor less than or equal to its square root).

This final array shows that the numbers 2, 3, 5, 7, and 11 are prime.

Final (Question 6 continues...) Page 14 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued...)

Q6.1 (4 points) What lines of code should be written in the given blanks in the C code?

<BLANK 1>:

<BLANK 2>:

We run this program on a 32-bit system with a direct-mapped, 4 KiB cache, with 128B blocks.

Q6.2 (1 point) What is the T:I:O breakdown of this cache?

Tag:

Index:

Offset:

Q6.3 (3 points) How many misses of each type occur if we call primelist(4096)?

Compulsory:

Capacity:

Conflict:

Q6.4 (1 point) Disclaimer: We think this subpart is especially challenging, so feel free to skip it and

come back later.

How many misses of each type occur if we call primelist(16384)?

You may use the function pi(n) to denote the number of primes less than or equal to n. (So pi (2)

= 1,pi(10) = 4, etc)

Compulsory:

Capacity:

Conflict:

Final (Question 6 continues...)

This content is protected and may not be shared, uploaded, or distributed.

Page 15 of 22

CS 61C - Spring 2022

(Question 6 continued...)

We run this code with pragma omp using 4 threads as follows:

1 char* primelist(uint32_t n) {

2 char* primes = <BLANK 1>;

3 if (<BLANK 2>) return NULL;

4 primes[0] = 1;

5 primes[1] = 1;

6 #pragma omp parallel for

7 for (int i = 2; 1 * 1 < n; i++) {

8 if (!primes[i]) { // If i is a prime number,
9 for (int j =2 * 1i; j <n; j += 1) {

10 primes[j] = 1; // Cross out all multiples of i
11 }

12 }

13 }

14 return primes;

15 3}

Q6.5 (2 points) Does this program have data races?
O Yes, and it could change the output of the function

QO Yes, but it does not change the output of the function

O No

Final Page 16 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

Q7 A Page on Page Tables
For this question, assume that we are working with a byte-addressed system with 32 GiB of virtual
memory, 64 MiB of physical memory, and a 2 KiB page size. Including metadata, each page table entry
is set to be 4 bytes long.

(9 points)

For Q7.1 through Q7.4, assume we have a single level page table with no TLBs.

Q7.1 (1.5 points) How many bits long is our page offset?

Q7.2

Q7.3

Q7.4

(1.5 points) How many

bits are there in the PPN?

(1.5 points) How many

bits are there in the VPN?

(1.5 points) How many

PTEs will we have in our page table?

Noticing that this is inefficient, we decide to use a two-level hierarchical page table with no TLBs. Our
VPN bits are split evenly among the two levels.

Q7.5 (1.5 points) How many PTEs are in the L1 page table?

Q7.6

Final

(1.5 points) How many

pages worth of memory does a single L2 page table take?

Page 17 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

Q8 Kernel Panic (15 points)
In Project 4, one of the main components was writing a parallel matrix multiplication algorithm. One
interesting optimization that we didn’t cover is the idea of a register-based kernel; in a similar vein to
how cache blocking works, we create a small enough block that our working data gets stored within
registers instead.

For this question, we will consider the use of a 2 x 2 kernel; that is, we compute a 2 x 2 block of the
result matrix at a time. Complete the following function:

Signature: void matmul_kernel (double* result, double* matl, double* mat2_T, int N);

Arguments:
» double* result: A section of memory storing at least 2 x 2 doubles worth of data

« double* matl: A2 X N matrix stored in row-major order

» double* mat2_T: An N X 2 matrix stored in column-major order (in other words, this matrix
has already been transposed from row-major order for you)

« int N: The value N as above. You may assume that N is a multiple of 4.

e

Effect: Set result to equal matl * mat2_T, stored in row-major order.

You have access to the following 4-double SIMD operations:

« vector* vec_load(double* A):Load 4 doubles at the given memory address A into a vector
« vector* vec_set0(): Load all 0s into a vector

. vector* vec_fma(vector* A, vector* B, vector* C): Performs a element-wise fused
multiply-add: result = A + B * Cin a single operation

+ double vec_sum(vector* A): Adds all elements of the vector together: result = A[0] +
AT1] + A[2] + A[3]

Final (Question 8 continues...) Page 18 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

(Question 8 continued...)

Q8.1 (10 points) Fill in the code below.

void matmul_kernel (double* result, double* matl, double* mat2_T, int N) {

vector® a = ;
vector* b = ;
vector* c = ;
vector* d = ;
for (int i = 0; ;) {

vector* mlr0 vec_load(matl + i);

vector* mlrl
vector* m2c0

vec_load(matl +);
vec_load(mat2_T + i);

vector® m2cl = vec_load(mat2_T +);

}

result[0] = (a);

result[1] = (b);

result[2] = ()

result[3] = (d;

}
Final (Question 8 continues...) Page 19 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

(Question 8 continued...)

Instead of a 2 x 2 kernel, we realize that we can improve our efficiency by using a 3 x 3 kernel instead.

Q8.2 (1 point) For a 3 x 3 kernel, how many vector registers would we initialize outside the for loop?

Q8.3 (1 point) For a 3 x 3 kernel, how many vector registers get loaded inside each iteration of the for
loop?

Q8.4 (3 points) If we run this on a system which has access to 64 vector registers, what is the largest
square kernel size we can use while still maintaining speedup? Submit the side length (so if you
believe that the 2 x 2 kernel shown above is the largest kernel size, submit 2).

Final Page 20 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

Nothing on this page will be graded.

Is there anything you want us to know?

Got a message/doodle for Cece or Nick?

Final Page 21 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

This page intentionally left (mostly) blank.
Please do not tear off any pages from the exam.

Final Page 22 of 22 CS 61C - Spring 2022

This content is protected and may not be shared, uploaded, or distributed.

