McMahon, Weaver Spring 2022

CS 61C

Midterm

Print your name:									
RINT your hame.	(last)			.,			(first)		
Print your student ID:									
You have 110 minutes. There	are 5 questio	ns of	vary	ing c	redit	(100]	points to	otal).	
	Question:	1	2	3	4	5	Total		
	Points:	12	18	18	40	12	100		
For questions with circular b	ubbles , you	may	selec	t onl	y one	choi	ce.		
O Unselected option	(completely	unfill	ed)						
Only one selected	option (comp	oletel	y fille	ed)					
For questions with square ch	eckboxes, y	ou m	ay se	elect o	one o	r moi	re choice	es.	
☐ You can select									
multiple squares (c	ompletely fi	lled)							
Anything you write that you will not be graded.	cross out wi	ll not	be g	raded	l. An	ythin	g you w	rite outside the an	swer boxes
If an answer requires hex inpinstead of Oxdeadbeef. Pleas specified. For all other bases,	e include he	x (0x	or b	inary	(0b)	prefi		•	
Read the following honor o	code and sig	gn yo	ur n	ame.					
I understand that I may not of the Berkeley Campus Co- reported to the Center for S the exam and a correspondi	de of Student tudent Cond	Conuct ar	duct and ma	and a ay fur	ckno ther	wledg result	ge that a	cademic misconduc ninimum, negative p	ct will be
Sign your name:									

Q1	True/False		(12 points)
Q1.1	_	True or False: If you wanted to store the you would have to write int $x = 0xEFBI$	=
	O TRUE	0	FALSE
Q1.2	aligned addr	True or False: When possible, the C comesses (ex. 4 byte objects stored at an addressed memory.	
	O TRUE	0	FALSE
Q1.3	=	True or False: The compiler converts code level language like RISC-V.	written in a higher-level language like C
	O TRUE	0	False
Q1.4	` • ′	True or False: The symbol and relocation ll labels get converted into byte offsets.	tables are discarded after the assembler
	O TRUE	0	FALSE
Q1.5	5 (1.5 points)	True or False: It is possible to use 9 bits to	represent 513 unique values.
	O TRUE	0	FALSE
Q1.6	=	True or False: Typically, signed integers ar implify arithmetic operations performed or	
	O TRUE	0	FALSE
Q1.7	7 (1.5 points) 7 bits.	True or False: All base RISC-V 32-bit instru	ctions share the same two least significant
	O TRUE	0	FALSE
Q1.8	3 (1.5 points) instructions.	True or False: Branch instructions can repr	esent a larger immediate value than I-type
	O True	0	False

	Short Answer (18 points
Q2.1	(3 points) Convert -12 to an 8-bit two's complement representation.
	Express your answer in binary, including the relevant prefix.
Q2.2	(3 points) Convert $2^{32} - 15$ to a 32-bit unsigned representation.
	Express your answer in hexadecimal, including the relevant prefix.
whi	the following three subparts, assume that we are working with a binary floating point representation ich follows IEEE-754 standard conventions, but which has 3 exponent bits (and a standard exponent of -3) and 4 significand bits.
Q2.3	(3 points) Convert -12 to its floating point representation under this floating point system. Express your answer in binary, including the relevant prefix.
Q2.4	(3 points) What is the largest non-infinite number that can be represented by this system? Express your answer in decimal.
Q2.5	(3 points) What is the smallest positive number that can be represented by this system? Express your answer as an odd integer multiplied by a power of 2.
Q2.6	(3 points) Translate the following RISC-V instruction into its corresponding hexadecimal value. ori t6 s0 -12
	0x

(18 points)

Note: we think this is the trickiest question on the exam.

Define statements can be useful, but it's important to be careful when using them.

```
1 #include <stdio.h>
2 #include <stdlib.h>
3 #define abs(x) ((x) < 0 ? -(x) : (x))
4 #define f(a,b) a*b/4
  int main() {
6
      int a = 10;
      printf("Question 3.1: %d\n", a^2);
7
8
      int i = 0xA6004F4E;
9
10
      printf("Question 3.2: 0x\%X\n", i|(i<<4));
      printf("Question 3.3: 0x%X\n", abs(i));
11
12
13
      int b = 10;
14
      printf("Question 3.4: %d\n", f(0+1, b));
      printf("Question 3.5: %d\n", f(1+0, b));
15
16
      int k = 100;
17
18
      int* kptr = &k;
      printf("Question 3.6: %d\n", f(k+,kptr));
19
20
      return 0;
21 }
```

The %d format modifier outputs an integer in decimal. The %X format modifier outputs an integer as a hexadecimal string, using capital letters for A-F.

This code compiles. What is printed by this code? Please write your answers in the answer boxes provided on the next page.

(Question 3 continued...)

Each line is worth 3 points.

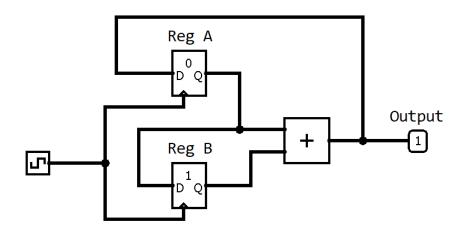
Question 3.1:
Question 3.2:
Question 3.3:
Question 3.4:
Question 3.5:
Question 3.6:

Q4 Lost in Translation

(40 points)

Consider the following Python class:

```
class Vector:
def __init__(self, x, y):
    self.x = x
    self.y = y
def transform(self, f):
    return Vector(f(self.x), f(self.y))
```


Q4.1 (20 points) We want to translate this code to C. Fill in the following C code. Assume all allocations succeed. For full credit, your solution must use the minimum amount of memory required.

```
1
   #include <stdlib.h>
2
3
   typedef struct Vector {
4
      int x;
5
      int y;
6
   } Vector;
        *transform(Vector *self, int (*f)(int)) {
7
8
           ______ newVector = ______;
9
      newVector _____ x = ______;
10
      newVector _____;
11
12
  }
```

Q4.2 (20 points) Translate the transform function to RISC-V. The function takes inputs self in a0 and f in a1, and returns output in a0. You may assume that Vector is as defined in the C code. You may also assume that you have access to malloc, and that malloc and f each receive their argument in a0, and return their result in a0. Your solution MUST fit within the lines provided.

1 2	transform: addi sp sp
3	
4	
5	
6	
7	
8	
9	
10	jal malloc
11	
12	
13	jalr
14	
15	
16	jalr
17	
18	
19	
20	
21	
22	
23 24	addi sp spret

Consider the following circuit:

All data wires (wires not connected to the clock) are 8 bits wide.

Q5.1 (8 points) Assume that the circuit is in the above state at clock cycle 0; register A is currently storing 0, register B is currently storing 1, and the circuit is outputting 1. **For this part only**, assume that the clock period is significantly longer than any propagation delays and register setup/hold/clk-to-q time. Write the outputted values (in decimal) from clock cycles 1 to 8.

Cycle 1	Cycle 2	Cycle 3	Cycle 4
Cycle 5	Cycle 6	Cycle 7	Cycle 8

Q5.2 (4 points) Assume that the circuit has the following delays:

Register clk-to-q time	3ns
Register setup time	2ns
Register hold time	1ns
Adder propagation delay	4ns

Wires are assumed to have no propagation delay. What is the minimum clock period needed for this circuit to have the same behavior as in Q5.1?

(Optional) The Finish Line

(0 points) You've reached the end of the exam! If there's anything you'd like to tell course staff, let us know here!

(0 points) What are their names?

(0 points) What else are they selling? (fill in the sale table)

This page intentionally left with only one sentence.