
CS 61C
Spring 2023

Garcia, Yokota
Final

Solutions last updated: Tuesday, May 16, 2023
Print your name: ,

(last) (first)

Print your student ID:

You have 170 minutes. There are 10 questions of varying credit (100 points total).

Question: 1 2 3 4 5 6 7 8 9 10 Total

Points: 10 10 23 13 10 5 14 7 7 1 100

For questions with circular bubbles, you may select only one choice.

Unselected option (completely unfilled)

Only one selected option (completely filled)

For questions with square checkboxes, you may select one or more choices.

You can select

multiple squares

(completely filled)

Anything you write that you cross out will not be graded. Anything you write outside the answer boxes
will not be graded. If you write multiple answers or your answer is ambiguous, we will grade the worst
interpretation. For coding questions, you may write at most one statement and you may not use more
blanks than provided.

If an answer requires hex input, make sure you only use capitalized letters! For example, 0xDEADBEEF
instead of 0xdeadbeef. Please include hex (0x) or binary (0b) prefixes in your answers unless otherwise
specified. For all other bases, do not add any prefixes or suffixes.

Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I am aware
of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will be
reported to the Center for Student Conduct and may further result in, at minimum, negative points on
the exam.

Sign your name:

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 23

Q1 RISC-y Array Arrchitecture (10 points)
Writing code to access integer arrays can be really annoying in RISC-V! Suppose we come up with new
instructions, readArr to read from integer arrays and writeArr to write to integer arrays. For this
question, you may assume integers are 32 bits.
readArr rd, rs1, rs2 will read the array that rs1 points to at the index stored in rs2, and put
that value in register rd. In C pseudocode: rd = ((int *) rs1)[rs2].

Q1.1 (3.5 points) What changes would we need to make to our datapath in order for us to implement
the readArr instruction with as few changes as possible? Select all that apply.

Add a new immediate type for ImmGen

Add a new output to Regfile for a third register value

Add a new input to the AMux and update any relevant selector/control logic

Add a new input to the BMux and update any relevant selector/control logic

Add a new ALU operation and update any relevant selector/control logic

Add a new DMEM mux which feeds into the data input of the DMEM, and any relevant
selector/control logic

Add a new input to WBMux and update any relevant selector/control logic

None of the above

Solution: The readArr instruction is similar to any other R-type instruction, except that
the ALU operation performed must be rs1 + rs2 * 4. Hence, we need to add a new ALU
operation, and there are no other changes needed to the standard datapath.
Grading: Each checkbox was graded as it’s own true/false question, and selecting "None of
the above" was treated as not selecting any of the other choices.

Final (Question 1 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 23 CS 61C – Spring 2023

(Question 1 continued. . .)

writeArr rs3, rs1, rs2 will take the value in register rs3, and write that value to the array that
rs1 points to at index rs2. In C pseudocode: ((int *) rs1)[rs2] = rs3.

Q1.2 (3.5 points) Assume that the changes, if any, for readArr have not been implemented for this
subpart. What changes would we need to make to our datapath in order for us to implement the
writeArr instruction with as few changes as possible? Select all that apply.

Add a new immediate type for ImmGen

Add a new output to Regfile for a third register value

Add a new input to the AMux and update any relevant selector/control logic

Add a new input to the BMux and update any relevant selector/control logic

Add a new ALU operation and update any relevant selector/control logic

Add a new DMEM mux which feeds into the data input of the DMEM, and any relevant
selector/control logic

Add a new input to WBMux and update any relevant selector/control logic

None of the above

Solution: The writeArr instruction is not similar to any existing RISC-V instructions, so
there are a couple of modifications needed. First, similar ot readArr, it requires the ALU to
compute the address at which to store rs3, which requires a new ALU operation (rs1 + rs2
* 4). Unline existing S-type instructions, where the data stored in DMEM comes from rs2,
here, the data comes from rs3. As a result, we also need to add a new DMEM mux which can
switch between passing rs2 and rs3 into the data input port of the DMEM. Finally, writeArr
is the only instruction that reads three register values, so we need to also add a new output to
Regfile.
Grading: Each checkbox was graded as it’s own true/false question, and selecting "None of
the above" was treated as not selecting any of the other choices.

Final (Question 1 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 23 CS 61C – Spring 2023

(Question 1 continued. . .)

Q1.3 (3 points) Eddy noticed that the structure of writeArr is similar to an R-type instruction. However,
when he tried to use the control signals for an R-type instruction, it didn’t work. Which of the
following control signals does he need to change to correctly implement writeArr? Select all that
apply.

PCSel

ASel

BSel

RegWEn

MemRW

None of the above

Solution:

• PCSel: always 0 for R-types, 0 for writeArr

• ASel: always rs1 for R-types, also rs1 for writeArr because the ALU performs "rs1
+ rs2 * 4"

• BSel: always rs2 for R-types, also rs2 for writeArr because the ALU performs "rs1 +
rs2 * 4"

• RegWEn: always 1 for R-types, but must be 0 for writeArr since it does not write to
any register

• MemRW: always 0 for R-types, but must be 1 for writeArr since it needs to write to
DMEM

Grading: Each checkbox was graded as it’s own true/false question, and selecting "None of
the above" was treated as not selecting any of the other choices.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 23 CS 61C – Spring 2023

Q2 IF Only ID Pipelined Better (10 points)
In Project 3, we implemented a RISC-V CPU with two stages; stage 1 included IF and stage 2 included
ID/EX/MEM/WB. For this question, imagine instead that we implement a two-stage pipeline with a
different split; stage 1 will include IF/ID and stage 2 will include EX/MEM/WB (IF/ID/EX/MEM/WB are
defined equivalently to the pipelined CPU on the reference card).
For Q2.1 and Q2.2, assume the following delays for each component. Any component not listed is
assumed to have a negligible delay.

Component Delay
τclk-to-q 35ps
τsetup 20ps
Mux 75ps

Regfile Setup 20ps
Regfile Read 175ps

Immediate Generator 150ps
Branch Comparator 200ps

ALU 200ps
Memory Read 300ps

Q2.1 (3 points) What is the minimum clock period of this circuit, in picoseconds, to achieve correct
behavior?

Solution: 855ps (τclk-to-q (35) + Immediate Generator (150) + Mux (75) + ALU (200) + Memory
Read (300) + Mux (75) + τsetup (20)).
The critical path occurs in stage 2 for a load instruction.
Grading: Partial credit was given for errors that showed conceptual understanding of what
the critical path is, but excluded or included an extra component’s timing. We did not give
partial credit for excluding some components since we cannot clearly distinguish between a
conceptual misunderstanding or a mechanical error.

Q2.2 (2 points) Which component in stage 2 can we move to stage 1 to decrease the minimum clock
period of this circuit the most, while maintaining the same behavior? If a decrease is not possible,
write “Not Possible”.

Solution: Immediate generator
If we move the immediate generator from stage 2 into stage 1, the immediate generator is no
longer part of the critical path since it can occur in parallel with Regfile Read (which takes
175ps).
Grading: All or nothing.

Final (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 23 CS 61C – Spring 2023

(Question 2 continued. . .)

For the remainder of this question, assume that the changes made in Q2.2, if any, have not been
implemented.

Q2.3 (3.5 points) In the CPU, which of the following values must have a pipeline register? Select all
that apply.

Instruction

Program Counter

RegReadData1

RegReadData2

Immediate

ALUOut

MemReadData

None of the above

Solution: The values that require a pipeline register are all values generated in stage 1, which
are Instruction (from IMEM), Program Counter (from the PC register), RegReadData1 (from
Regfile) and RegReadData2 (also from Regfile). The remaining three values are all outputs of
components in the second stage of our pipeline.
Grading: Each checkbox was graded as it’s own true/false question, and selecting "None of
the above" was treated as not selecting any of the other choices.

Q2.4 (1.5 points) Assume that the pipeline has been correctly implemented. Which types of hazards
could a program experience? Assume that you cannot read from and write to the Regfile in the
same clock cycle.

Control Data Structural None

Solution: Similar to the pipeline implemented in project 3B, there could be control hazards if
a branch is taken (the instruction in stage 1 must be flushed). There can also be data hazards if
the instruction in stage two writes to the Regfile, and the instruction from stage 1 attempts to
read from the same register (since you cannot read and write to the Regfile in the same clock
cycle). This is not a structural hazard because it cannot be solved by adding another Regfile
(since they won’t share data).
Grading: Each checkbox was graded as it’s own true/false question, and selecting "None of
the above" was treated as not selecting any of the other choices.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 23 CS 61C – Spring 2023

This page intentionally left (mostly) blank.

The exam continues on the next page.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 23 CS 61C – Spring 2023

Q3 Faster Than Average (23 points)
In this question, you will parallelize a function to compute the average of all values in a matrix. Below
is a single-threaded implementation of this function.

1 double matrix_average(double** matrix, int num_rows, int num_cols) {
2 double global_sum = 0.0;
3 for (int i = 0; i < num_rows; i++) {
4 for (int j = 0; j < num_cols; j++) {
5 global_sum += matrix[i][j];
6 }
7 }
8 return global_sum / (num_rows * num_cols);
9 }

Using the SIMD operations provided, optimize matrix_average. You have access to the following
SIMD operations. A vector is a 256-bit vector register capable of holding 4 doubles.

• vector vec_load(double* A): Loads 4 doubles at memory address A into a vector
• void vec_store(double* A, vector B): Stores the 4 doubles in vector B at memory
address A

• vector vec_set0(): Puts all 0s into a vector
• double vec_sum(vector A): Adds all elements of the vector together: return A[0] + A[1]
+ A[2] + A[3]

• vector vec_add(vector A, vector B): Adds A and B together elementwise

1 double matrix_average(double** matrix, int num_rows, int num_cols) {
2 double global_sum = 0.0;

3 vector sum_vec =
Q3.1

;

4 for (int i = 0; i < num_rows; i++) {

5 for (int j = 0; j <
Q3.2

;
Q3.3

) {

6 vector values =
Q3.4

;

7 sum_vec =
Q3.5

;

8 }
9 for (int j =

Q3.6
; j <

Q3.7
;

Q3.8
) {

10 global_sum += matrix[i][j];
11 }
12 }
13 global_sum +=

Q3.9
;

14 return global_sum / (num_rows * num_cols);
15 }

Final (Question 3 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 23 CS 61C – Spring 2023

(Question 3 continued. . .)

Solution:

Q3.1: vec_set0()
Q3.2: num_cols / 4 * 4
Q3.3: j += 4
Q3.4: vec_load(matrix[i] + j)
Q3.5: vec_add(values, sum_vec)
Q3.6: num_cols / 4 * 4
Q3.7: num_cols
Q3.8: j += 1
Q3.9: vec_sum(sum_vec)

Final (Question 3 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 23 CS 61C – Spring 2023

(Question 3 continued. . .)

Parallelize matrix_average using OpenMP without using #pragma omp parallel for or
reduction. Each thread should work on one or more rows of the matrix. Assume num_rows is a
multiple of num_threads.

1 double matrix_average(double** matrix, int num_rows, int num_cols) {
2 double global_sum = 0.0;

3
Q3.10

4 {
5 int num_threads = omp_get_num_threads();
6 int thread_num = omp_get_thread_num();

7 int chunk_size =
Q3.11

;

8 int start_row =
Q3.12

;

9 int end_row =
Q3.13

;

10
11 for (int i = start_row; i < end_row; i++) {
12 double row_sum = 0.0;
13 for (int j = 0; j < num_cols; j++) {
14 row_sum += matrix[i][j];
15 }

16
Q3.14

17
Q3.15

18 }
19 }
20 return global_sum / (num_rows * num_cols);
21 }

Solution:

Q3.10: #pragma omp parallel
Q3.11: num_rows / num_threads
Q3.12: thread_num * chunk_size
Q3.13: (thread_num + 1) * chunk_size
Q3.14: #pragma omp critical
Q3.15: global_sum += row_sum

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 10 of 23 CS 61C – Spring 2023

Q4 Convoluted Caching (13 points)
Consider the following function that takes in two integer arrays, a (of length a_len) and b (of length
b_len), and returns the 1D convolution of a and b. Assume results is properly allocated.
Let a=0x1000, b=0x2000, results=0x3030, a_len=4, and b_len=2.

void convolve_1d(int* a, int a_len, int* b, int b_len, int* results) {
for (int i = 0; i < a_len - b_len + 1; i++) {

register int sum = 0;
for (int j = 0; j < b_len; j++) {

sum += b[j] * a[i + j];
}
results[i] = sum;

}
}

For Q4.1 and Q4.2, we have a single-level, direct-mapped 64B cache with 16B blocks and 16-bit
addresses.

Q4.1 (3 points) What are the tag, index, and offset bits of the address 0x3037?

Solution: Since the block size is 16B, there are 4 offset bits. The cache is direct mapped, and
there are 4 cache lines, there are 2 index bits. This leaves us with 16− 4− 2 = 10 tag bits.
Tag: 0b00_1100_0000
Index: 0b11
Offset: 0b0111

Q4.2 (2.5 points) What is the overall hit rate for a call to convolve_1d? No need to simplify the
fraction.

Solution: 2
15

There are a total of three iterations of the outer loop, and two iterations of the inner loop
per iteration of the outer loop. For each iteration of the inner loop, there are two memory
accesses: reading b[j] and reading a[i + j]. Each outer loop has an additional memory
access: writing to results[i]. In total, there are 5 accesses per iteration of the outer loop,
and 15 accesses overall.
For each set of accesses to a and b, the program experiences thrashing since the index of these
blocks conflict. As a result, the accesses to a and b will always be misses (first two compulsory,
then the rest are conflict).
The accesses to results do not cause any thrashing, so out of the three accesses (one per
iteration of the outer loop), there is one compulsory miss and two hits, giving us a hit rate of
2
15 .

Final (Question 4 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 11 of 23 CS 61C – Spring 2023

(Question 4 continued. . .)

Q4.3 (2.5 points) We change to a 2-way set associative cache of the same size with a LRU replacement
policy. What is the overall hit rate for a call to convolve_1d? No need to simplify the fraction.

Solution: 12
15

Since there can now be two caches lines with the same index, the accesses to a and b no longer
thrash. In total, there are three compulsory misses (one for each array), and the rest are hits,
giving us a hit rate of 12

15 .

Q4.4 (2.5 points) We change to a fully associative cache of the same size with a LRU replacement policy.
What is the overall hit rate for a call to convolve_1d? No need to simplify the fraction.

Solution: 12
15

Similar to Q4.3, there is no thrashing here either, and all three arrays fit entirely in the cache.
As a result, our hit rate is once again 2

15 .

Q4.5 (2.5 points) We discover that accessing physical memory will take 400 cycles, so we decide to add
an L2 cache. The hit rate of the L1 cache is 75%, and the hit rate of the L2 cache is 99%. With an
access time of 6 cycles to fetch from the L1 cache, and an access time of 36 cycles to fetch from the
L2 cache, what would our memory access time be for this system, on average?

Solution: 16 cycles

tavg = tL1_access + L1_miss_rate · (tL2_access + L2_miss_rate · tmen_access)

tavg = 6 + 0.25 · (36 + 0.01 · 400)
tavg = 16 cycles

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 12 of 23 CS 61C – Spring 2023

Q5 The Lookup Box (10 points)
Consider a system with a 32-bit virtual address space, 256B pages, and 16 MiB of DRAM as main
memory. Provided below is the TLB and a portion of the page table. The TLB is fully associative and
there is no data cache. The next free physical pages in main memory start at physical addresses
0x61DE00 and 0x61EF00, respectively.
Each PTE is 32 bits. Bit 31 is the valid bit, bit 30 is the dirty bit, bits 16 through 29 hold other metadata
(not relevant for this question), and bits 0 through 15 hold the PPN.

Initial TLB State:
Tag (VPN) PPN Valid Dirty
0x000000 0x23EF 1 0

0x000001 0xFFFF 0 0

Page Table:
Index PTE
0x0 0x80AB23EF

0x1 0x80EE00C0

0x2 0x8123200A

0x3 0x3561CBA8

... ...
0xA 0xCAFFEEE0

For each question, determine what the memory address access results in, and calculate its physical
address. Note that each memory access is executed in sequence, so they are not independent of each
other.

Q5.1 (2.5 points) Virtual Address: 0x000000FF
TLB hit TLB miss, no page fault TLB miss, page fault

Physical Address:

Solution: Physical Address: 0x23EFFF
The VPN is 0x000000 and the offset is 0xFF. The VPN exists in the TLB and is valid. The
corresponding PPN is 0x23EF, so the physical address is 0x23EFFF.

Q5.2 (2.5 points) Virtual Address: 0x00000283
TLB hit TLB miss, no page fault TLB miss, page fault

Physical Address:

Solution: Physical Address: 0x200A83
The VPN is 0x000002 and the offset is 0x83. The VPN does not exist in the TLB, so we look
for the corresponding PTE. The PTE tells us that the PPN is 0x200A, so the physical address is
0x200A83.

Final (Question 5 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 13 of 23 CS 61C – Spring 2023

(Question 5 continued. . .)

Q5.3 (2.5 points) Virtual Address: 0x00000AAA
TLB hit TLB miss, no page fault TLB miss, page fault

Physical Address:

Solution: Physical Address: 0xEEE0AA
The VPN is 0x00000A and the offset is 0xAA. The VPN does not exist in the TLB, so we look
for the corresponding PTE. The PTE tells us that the PPN is 0xEEE0, so the physical address is
0xEEE0AA.

Q5.4 (2.5 points) Virtual Address: 0x00000360
TLB hit TLB miss, no page fault TLB miss, page fault

Physical Address:

Solution: Physical Address: 0x61DE60
The VPN is 0x000003 and the offset is 0x60. The VPN does not exist in the TLB, so we look
for the corresponding PTE. There are no valid PTEs for this VPN, therefore, it is a page fault.
The next available page starts at 0x61DE00, so our PPN becomes 0x61DE. The physical address
is 0x61DE60.

Solution:

Grading: 1 point was awarded for the correct access result. 0.5 points was awarded for the correct
offset, 0.5 points was awarded for the including the PPN in the address (recognizing the correct
PTE), and 0.5 points was awarded for the correct physical address size and no extraneous bits other
than the PPN and the offset.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 14 of 23 CS 61C – Spring 2023

Q6 Cumulative: Potpourri (5 points)

Q6.1 (1 point) The OS running on a cluster of computers in a datacenter allows a single machine to
read and write the memory and local disk of a remote machine in the same rack or array.
According to lecture, which of the following are true? Select all that apply.
(“farther away” means that the distance the data travels increases in steps, first to our local machine,
then to a machine in our same rack, then to a machine in our same array.)

As our CPU sends data to DRAM farther away, bandwidth increases

As our CPU sends data to Disk farther away, bandwidth increases

As our CPU sends data to DRAM farther away, latency increases

As our CPU sends data to Disk farther away, latency increases

We have higher latency to DRAM on an Array computer than to our own disk

We have higher bandwidth to DRAM on an Array computer than to our own disk

None of the above

Solution: See lecture 38, slide 20.
Grading: Each checkbox was graded as it’s own true/false question, and selecting "None of
the above" was treated as not selecting any of the other choices.

Final (Question 6 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 15 of 23 CS 61C – Spring 2023

(Question 6 continued. . .)

Q6.2 (1 point) After a single machine M finishes its assigned portion of a map task in a MapReduce
cluster, which of the following can happen immediately, regardless of the overall program state?
Select all that apply.

M can shut down without risking the success of the overall computation

M can be assigned a new map task

Data shuffling of the workload M just finished can begin

The reduce task for the workload M just finished can begin

None of the above

Solution: If M shuts down, the map task can be reassigned to a different machine and no
data is lost. After M finishes a task, it can be assigned another map task, regardless of the
program state. Data shuffling of the workload that M just finished can also begin, since it does
not depend on anything else except the task M just completed. However, the reduce task for
the workload that M just finished cannot begin, since reduce tasks aggregate outputs from
multiple map tasks, and we don’t know if the other map tasks have finished yet.
Grading: Each checkbox was graded as it’s own true/false question, and selecting "None of
the above" was treated as not selecting any of the other choices.

Q6.3 (1 point) We want to send one bit using a Hamming error correcting code. What are the valid bit
patterns you could send that correspond to 0b0 and 0b1?
0b0: 0b1:

Solution: Each Hamming error correcting code must be at least 3 bits (two parity bits, one
data bit). The ECC for 0b0 is 0b000 and for 0b1 is 0b111.
Grading: All or nothing for each answer box.

Final (Question 6 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 16 of 23 CS 61C – Spring 2023

(Question 6 continued. . .)

Your network card just received a packet with an incorrect checksum.

Q6.4 (1 point) According to lecture, which of the following is true?

There was a guaranteed error in the payload but not the checksum

There was a guaranteed error in the checksum but not the payload

There was a guaranteed error in either the payload or checksum

None of the above

Solution: See lecture 35, slide 28.
Grading: All or nothing.

Q6.5 (1 point) According to lecture, what should you do?

Send back a traditional data packet with information about which packet had the problem

Send back an “ACK”

Send back a “NO-ACK”

Send back nothing and delete the packet

Solution: See lecture 35, slide 28.
Grading: All or nothing.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 17 of 23 CS 61C – Spring 2023

Q7 Cumulative: RV32tok (14 points)
Write a program splitCode, which will split a RISC-V program into blocks of code with no branches
or jumps (jal or jalr). Specifically, splitCode will have the following function signature:

• Input: int* code, an array of RISC-V instructions. Each RISC-V instruction is stored as a 32-bit
integer, equal to its translation. You may assume that all instructions are valid RISC-V base
instructions, and that there are no pseudoinstructions, ecalls, or ebreaks.

• Input: n, the number of instructions in code.
• Input: int*** result, a pointer to store your result. Your result should be an array of int*s,
where each int* points to the beginning of a sequence of consecutive instructions with no
branches or jumps. Each of these arrays should be "null-terminated"; that is, the last element of
each array should be the number 0, to signify the end of the array. Every non-branch/non-jump
instruction must be represented in exactly one subarray of your result. No branch/jump
instruction should be in any subarray of your result.

• Output: int, the length of your result.
For example, for the following RISC-V code:

1 beq x0 x0 pass
2 beq x0 x0 pass
3 add a0 t0 t1
4 add t0 a0 a1
5 add t0 a1 a2
6 xor a0 t0 t1
7 j pass
8 addi t0 x0 1
9 addi t0 x0 2
10 beq x0 x0 pass

result should point to the following array, and the return value should be 5.

[
// The instructions before line 1
[0],
// The instructions between lines 1 and 2
[0],
// The instructions between lines 2 and 7
[add a0 t0 t1, add t0 a0 a1, add t0 a1 a2, xor a0 t0 t1, 0],
// The instructions between lines 7 and 10
[addi t0 x0 1, addi t0 x0 2, 0],
// The instructions after line 10
[0]

]

Useful C function prototypes:

void* malloc(size_t size);
void* calloc(size_t num_elements, size_t size);
void* memcpy(void* dest, void* source, size_t num_bytes);

Final (Question 7 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 18 of 23 CS 61C – Spring 2023

(Question 7 continued. . .)

1 // Returns true if instruction is a branch or jump instruction
2 bool isBranchJump(int instruction) {

3 return
Q7.1

;

4 }
5
6 int splitCode(int* code, int n, int*** result) {
7 int num = 0; // total number of branches and jumps

8 for(int i = 0;
Q7.2

; i++) {

9 num +=
Q7.3

;

10 }
11 int** data = malloc(

Q7.4
);

12 int* codecopy = calloc(n+1,
Q7.5

);

13 // Hint: You should not need any more memory allocations

14 memcpy(codecopy, code,
Q7.6

);

15 for(int i = 0;
Q7.7

; i++) {

16 data[i] =
Q7.8

;

17 while(
Q7.9

&&
Q7.10

!= 0) {

18
Q7.11

;

19 }

20
Q7.12

;

21 codecopy++;
22 }

23
Q7.13

;

24 return
Q7.14

;

25 }

Final (Question 7 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 19 of 23 CS 61C – Spring 2023

(Question 7 continued. . .)

Solution:

Q7.1: instruction & 64
Q7.2: i < n
Q7.3: isBranchJump(code[i])
Q7.4: sizeof(int*) * (num + 1)
Q7.5: sizeof(int)
Q7.6: sizeof(int) * n
Q7.7: num + 1
Q7.8: codecopy
Q7.9: !isBranchJump(*codecopy)
Q7.10: *codecopy
Q7.11: codecopy++
Q7.12: *codecopy = 0
Q7.13: *result = data
Q7.14: num + 1

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 20 of 23 CS 61C – Spring 2023

Q8 Cumulative: Chips Ahoy (7 points)
Consider the following set of tasks:

Task ID Time (minutes) Prerequisites Time Breakdown
0 100 - 90% memory, 10% math
1 100 - 90% memory, 10% math
2 100 0 30% memory, 70% math
3 100 0,1 30% memory, 70% math
4 100 1 30% memory, 70% math

Total 500 - 54% memory, 46% math

After running this set of tasks on your local, single-threaded CPU (referred to as Chip A) in 500
minutes, you decide that it’s too slow and decide to upgrade to a new chip.
At the store, you find two options:

• Chip B: A single-threaded CPU optimized for memory accesses. It can do memory operations 3
times as fast as Chip A, but it takes twice as long to do math operations.

• Chip C: A single-threaded GPU optimized for fast math. It can do math operations practically
instantly (infinite times speedup), but it takes twice as long as Chip A to do memory operations.

Q8.1 (2 points) Using Chip B alone, how many minutes would all 5 tasks take?

Solution: 550 minutes. 270 minutes of memory becomes 90 minutes, 230 minutes of math
becomes 460 minutes.
Grading: All or nothing.

Q8.2 (2 points) Using Chip C alone, how many minutes would all 5 tasks take?

Solution: 540 minutes. 270 minutes of memory becomes 540 minutes, 230 minutes of math
becomes 0 minutes.
Grading: All or nothing.

Q8.3 (3 points) Using one chip was still taking too long, so you buy both Chip B and Chip C from the
store, and connect them to Chip A in a new multicore machine with negligible overhead. Using all
three chips, what is the minimum amount of time required to complete this set of tasks? Each task
must be completed entirely on one chip.
Please also provide the list of tasks each chip will complete, in order of completion, or write "None"
if a chip does not complete any task. For example, if you decide to have Chip A complete all of the
tasks, your answer should be "0, 1, 2, 3, 4" for Chip A, and "None" for Chip B and Chip C.

Solution: 200 minutes. There are many task lists. For example: Chip A completes tasks 1 and
3, Chip B completes task 0, Chip C completes tasks 2 and 4.
Grading: Partial credit was awarded with a task list that would run in 200 minutes but the
wrong time was provided, or a task list that runs in <250 minutes and has the correct time.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 21 of 23 CS 61C – Spring 2023

Q9 Cumulative: The Magnus Effect (7 points)

Q9.1 (7 points) Write a Boolean expression that determines if a 19-bit unsigned integer can be expressed
exactly as a 19-bit floating point number. For full credit, you may use at most 8 Boolean operators
(|, &, ∼).
Inputs: Bits A through S
Output: One bit. Output 1 if 0b ABC DEFG HIJK LMNO PQRS is an unsigned number that can
be exactly represented as a 19-bit float which follows all IEEE-754 conventions, with 5 exponent
bits (and a standard bias of -15). Output 0 otherwise.
Hint: both the exponent and the mantissa provide nontrivial constraints.
For partial credit, describe in English how you can determine if a 19-bit unsigned integer can
be expressed exactly as a 19-bit floating point number (using the float representation described
above).

Solution: A|B|C|(D&(R|S))|(E&S)

As noted in the hint, two distinct constraints exist, provided by the exponent and
mantissa, respectively.

In order for an unsigned number to be representable, it needs to be small enough
that its exponent fits within five bits. The maximum exponent of a 19 bit floating point
number is 30− 15 = 15, taking into account that exponent 31 is reserved for infinities and
NaNs. Including the implicit one and a maximized mantissa, our range is slightly less than
double this exponent; thus we cannot represent any number that is 216 or greater. This means
that we cannot represent any number with any of bits ABC set to one.

In order for an unsigned number to be representable, it needs to be divisible by enough powers
of two that its mantissa fits within thirteen bits. The smallest level of precision we can repre-
sent is 0b1.0000000000001, which has a total of fourteen bits between the largest and smallest
one bit. Thus, we cannot represent any number that has more than fourteen bits between the
largest and smallest one bit. Since ABC must be zero by the above, we only have 16 bits
that can be nonzero. Thus, we need at least two bits on the outside of this to be zero; one of
DE,DS, orRS must be zero, or alternatively, none of the pairsDR,DS,ES can be both ones.

Putting this together, we get the equation (A|B|C) for the exponent constraint and
((D&R)|(D&S)|(E&S)) = ((D&(R|S))|(E&S)) for the mantissa constraint. Putting this
together and using De Morgan’s law provides our final answer.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 22 of 23 CS 61C – Spring 2023

Q10 The Finish Line (1 points)
Everyone will receive credit for this question, even if you leave it blank.

Q10.1 (1 point) On a scale of 1 to 10, rate Eddy’s weekly announcement puns.

Solution:

Q10.2 (0 points) Is there anything you want us to know?

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 23 of 23 CS 61C – Spring 2023

