
CS 61C
Spring 2023

Garcia, Yokota
Midterm

Solutions last updated: Saturday, March 2, 2024
Print your name: ,

(last) (first)

Print your student ID:

You have 110 minutes. There are 6 questions of varying credit (100 points total).

Question: 1 2 3 4 5 6 Total

Points: 24 24 14 16 10 12 100

For questions with circular bubbles, you may select only one choice.

Unselected option (completely unfilled)

Only one selected option (completely filled)

For questions with square checkboxes, you may select one or more choices.

You can select

multiple squares

(completely filled)

Anything you write that you cross out will not be graded. Anything you write outside the answer boxes
will not be graded.

If an answer requires hex input, make sure you only use capitalized letters! For example, 0xDEADBEEF
instead of 0xdeadbeef. Please include hex (0x) or binary (0b) prefixes in your answers unless otherwise
specified. For all other bases, do not add any prefixes or suffixes.

Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I am aware
of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will be
reported to the Center for Student Conduct and may further result in, at minimum, negative points on
the exam.

Sign your name:

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 17

Q1 Potpourri (24 points)

Q1.1 (2 points) For some n > 0, n-bit sign-magnitude and n-bit two’s complement can represent the
same number of values.

(A) True (B) False

Solution: False. Sign-magnitude has two representations of 0, so it’s able to represent one
fewer value than two’s complement.

Q1.2 (2 points) Offsets for jump instructions will always be resolved in the linker step.

(A) True (B) False

Solution: False. These are resolved in the assembler and linker.

Q1.3 (2 points) gcc executes all four steps of CALL.

(A) True (B) False

Solution: False. gcc is the C compiler.

Q1.4 (2 points) Using dynamic linking may result in a smaller executable size compared to static linking.

(A) True (B) False

Solution: True. Dynamic linking means you may not need to include the entire library in
your executable.

Q1.5 (2 points) Calling convention dictates that you must save ra onto the stack in the prologue.

(A) True (B) False

Solution: False. You just need to make sure ra is unchanged by the end of the function.
One common way to do this is saving the value of ra on the stack in the prologue, and
restoring the value on the stack back into ra in the epilogue.
However, other methods of preserving ra exist. For example, you could save ra on the stack
before every instruction that changes the value of ra (e.g. function calls). Then you can restore
the value on the stack back into ra after the instruction.

Midterm (Question 1 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 17 CS 61C – Spring 2023

(Question 1 continued. . .)

Q1.6 (3 points) Translate the following RISC-V instruction to its hexadecimal counterpart.
jal s3 588

Hint: 588 = 512 + 64 + 8 + 4

Solution: 0x24C009EF

Q1.7 (3 points) Write a Boolean expression that evaluates to the truth table below. You may use at most
2 Boolean operations. ∼ (NOT), | (OR), & (AND) each count as one operation. We will assume
standard C operator precedence, so use parentheses when uncertain.

W Y Z Out
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Solution: ∼ Y | Z
Other solutions may exist.

Midterm (Question 1 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 17 CS 61C – Spring 2023

(Question 1 continued. . .)

What is the output of this program on a 32-bit, little endian system?
Reminder: the reference sheet has a list of common C format specifiers.

1 #include <stdint.h>
2 #include <stdio.h>
3
4 int main() {
5 int8_t i = 0xA7;
6
7 // %hhd is like %d except it interprets i as an 8-bit integer
8 printf("Q1.8: %hhd\n", i);
9
10 // %hhu is like %u except it interprets i as an 8-bit integer
11 printf("Q1.9: %hhu\n", i);
12
13 char* str = "hello!!";
14
15 printf("Q1.10: %x\n", ((int8_t *) str)[1]);
16 printf("Q1.11: %x\n", ((int32_t *) str)[1]);
17 return 0;
18 }

Q1.8 (2 points)

Solution: −89

0xA7 interpreted as a signed, two’s complement, 8-bit integer is −89.

Q1.9 (2 points)

Solution: 167

0xA7 interpreted as an unsigned 8-bit integer is 167.

Q1.10 (2 points)

Solution: 'e' = 0x65
If we treat str as an array of int8_ts, then each element is 1 byte. The first element (zero-
indexing) is the character 'e'. Using our ASCII chart, we can convert this to hexadecimal and
get 0x65.

Midterm (Question 1 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 17 CS 61C – Spring 2023

(Question 1 continued. . .)

Q1.11 (2 points)

Solution: 0x0021216F or 0x21216F
If we treat str as an array of int32_ts, then each element is 4 bytes. The first element
(zero-indexing) consists of the four bytes 'o', '!', '!', and 0x00 (the null terminator at the
end of the string). In ASCII, these are the bytes 0x65 0x21 0x21 0x00, from lowest memory
address to highest memory address.
Finally we have to combine these 4 bytes into one 4-byte int32_t value. Since the system is
little-endian, 0x00 at the highest memory address is the most significant byte, and 0x65 at
the lowest memory address is the least significant byte.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 17 CS 61C – Spring 2023

Q2 I Can’t C My Cheatsheet; (24 points)

1 #define NUM_PAGES 8
2
3 typedef struct Page {
4 int num;
5 char* data;
6 } Page;
7
8 typedef struct Cheatsheet {
9 int student_id;
10 int total_length;
11 Page pages[NUM_PAGES];
12 } Cheatsheet;

The function cheatsheet_init receives as input the following:
• Cheatsheet** ch: The location in memory to store the pointer to the created Cheatsheet.
• int student_id: The student ID of the owner of the Cheatsheet.
• char** contents: An array of well-formatted strings of nonzero length. You may assume that
this array contains exactly NUM_PAGES strings, and that all strings are allocated on the stack.

It should create a well-formed Cheatsheet with the following properties, and save a pointer to that
Cheatsheet at the address ch points to:

• student_id should be set to the student_id argument.
• total_length should be set to the sum of the strlen of all strings in contents.
• Each Page in pages should be set as follows:

– The num of pages[i] is set to i.
– The data of pages[i] is set to the ith string of contents.

• The resulting cheatsheet (and all data in its pages) must persist through function calls, even if
the strings in contents are deallocated.

Useful C function prototypes:

void* malloc(size_t size);
void free(void *ptr);
void* calloc(size_t num_elements, size_t size);
void* realloc(void *ptr, size_t size);

size_t strlen(char* s);
char* strcpy(char* dest, char* src);

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 17 CS 61C – Spring 2023

(Question 2 continued. . .)

(15 points) Fill in cheatsheet_init so that it matches the described behavior.

1 void cheatsheet_init(Cheatsheet** ch, int student_id, char** contents) {

2 Cheatsheet* sheet =
Q2.1

;

3 sheet
Q2.2

= student_id;

4 for (int i = 0; i < NUM_PAGES; i++) {

5 Page* page =
Q2.3

;

6 page
Q2.4

= i;

7 page
Q2.5

=
Q2.6

;

8 strcpy(page
Q2.7

, contents[i]);

9 sheet
Q2.8

+= strlen(contents[i]);

10 }

11
Q2.9

;

12 }

Solution:

Q2.1: calloc(1, sizeof(Cheatsheet)
Note that we need to calloc in this case in order to set total_length equal to 0.
Q2.2: ->student_id
Q2.3: &sheet->pages[i]
When we allocate memory on the heap for a Cheatsheet, we allocate memory for a Page array
of size NUM_PAGES. Therefore, we already allocated memory for each Page. In order to get the
correct Page, we need to index into the correct Page in our Cheatsheet (sheet->pages[i]). To
get the pointer to this Page, we will use the & to get a pointer to this Page (&sheet->pages[i])
Q2.4: ->num
Q2.5: ->data
Q2.6: malloc(sizeof(char) * (strlen(contents[i]) + 1))
Note that we allocated memory for a char pointer but we now need to actually allocate memory
for the string itself. Also, strlen doesn’t consider the null-terminator, so we need to add 1.

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 17 CS 61C – Spring 2023

(Question 2 continued. . .)

Q2.7: ->data
Q2.8: ->total_length
Q2.9: *ch = sheet

For each of the following symbols, choose which section of memory it would live in.

Q2.10 (2 points) NUM_PAGES

(A) Stack (B) Heap (C) Code (D) Data/Static

Q2.11 (2 points) sheet

(A) Stack (B) Heap (C) Code (D) Data/Static

Q2.12 (2 points) *sheet

(A) Stack (B) Heap (C) Code (D) Data/Static

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 17 CS 61C – Spring 2023

(Question 2 continued. . .)

The update_contents function should update the contents of a Page if new_data has a length that
is less than or equal to MAX_STR_LEN. update_contents does not have to update the total_length
of a Cheatsheet.

Q2.13 (3 points) Is the following implementation of update_data correct (follows the described behav-
ior) and memory efficient?

1 int MAX_STR_LEN = 100;
2
3 // You may assume that new_data is stored on the heap
4 // and page is well-formed
5 void update_data(Page* page, char* new_data) {
6 if (strlen(new_data) > MAX_STR_LEN) {
7 return;
8 }
9 page->data = new_data;
10 }

(A) Yes (B) No

If you selected "No", provide a brief explanation. If you selected "Yes", leave this box blank.
We will only grade the first 15 words of your answer.

Solution: Memory leak. We need to free the old data before reassigning page->data to
new_data.
Note: There were a couple of alternative answers
1. Mentioning that line 6 is incorrect because strlen doesn’t include the null terminator.
There was ambinguity in what "length" meant (Does length include the null terminator or
not?)
2. (Out of scope) Mentioning how comparing size_t to an int could lead to a security vul-
nerability where the comparison on line 6 would fail, specifically if how strlen(new_data)
returned a number where, if represented in binary, had a leading 1. This solution is out of
scope for this class, and was only deemed correct if the student’s answer got every aspect of it
correct.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 17 CS 61C – Spring 2023

Q3 A Bit of Floating Point (14 points)
For this question, assume that we are working with a binary floating point representation, which
follows IEEE-754 standard conventions, but has 5 exponent bits (and a standard bias of −15) and 10
mantissa bits.

Q3.1 (2 points) What is the value of the floating point number 0x7F00?

Solution: NaN
0b0111 1111 0000 0000

The exponent bits are all 1s, and the mantissa bits are not all zeroes. This represents a NaN.

Q3.2 (2 points) Consider the floating point number−2.125. What is the largest (closest to+∞) possible
value we can represent by modifying a single bit of the floating point representation of this number?
Write your answer as a decimal number (e.g. 10.5).

Solution: 2.125

To get the closest to +∞, we can flip the sign bit. Changing any mantissa or exponent bit
leaves the number negative.

Q3.3 (5 points) Consider the floating point number 7.625. What is the largest (closest to +∞) possible
value we can represent by modifying a single bit of the floating point representation of this number?
Write the binary representation of each component of your answer.

Solution: Sign bit: 0b0
Exponent bits: 0b11001
Mantissa bits: 0b1110100000
7.625 = 61/8 = 61× 2−3 = 0b111101× 2−3 = (0b1.11101× 25)× 2−3 = 0b1.11101× 22

Sign bit: 0 (positive). We know flipping the sign bit will just make the number negative, which
isn’t helpful.
Mantissa bits: 0b11101 00000. To increase the number, the most-significant bit we could flip
is the 0 to a 1, which would produce 0b1.11111× 22. The difference between this number and
the original number is 0b0.00010× 22 = 0b0.01 = 1/4. Flipping any of the less-significant
0s would increase the number by even less.
Exponent bits: 2− (−15) = 17, which in unsigned 5-bit binary is 0b10001. We can increase
the number by flipping the most-significant 0 to a 1, which would produce 0b11001.
The overall solution is to leave the sign and mantissa bits unchanged, and flipping the most-
significant zero bit in the exponent.

Midterm (Question 3 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 10 of 17 CS 61C – Spring 2023

(Question 3 continued. . .)

Q3.4 (5 points) How many non-zero numbers x are there in this floating point system where x and 2x
differ by exactly 1 bit?
Write your answer as a sum or difference of unique powers of 2 (e.g. 23 − 22 + 21).

Solution: 215 − 212

Note that to double a floating-point number, we have to increase the exponent by 1.
When we increase the exponent by 1, what could happen? If the least-significant bit of the
exponent (as represented in bias notation) is 0, then the 0 gets flipped to a 1. For example,
0b11010 + 0b1 = 0b11011.
If the least-significant bit of the exponent is 1, then the 1 flips to a 0, a 1 carries over into
the next place, and other bits must change. For example, 0b11011 + 0b1 = 0b11100, which
changed 3 bits.
In summary, we need to figure out how many floating-point numbers have a least-significant
exponent bit of 0. This is half of the floating-point numbers (if you just wrote out all the bit
representations, half of them would have a 0 in the exponent LSB). There are 216 floating-point
numbers, and 215 of them have a 0 in the exponent LSB.
The last thing we need to do is remove the infinities, NaNs, and denorms, because adding 1 to
the exponent does not double these numbers. (In the case of denorms, changing the exponent
also introduces the implicit 1, which changes the number in other ways than just a simple
doubling.)
Denorms: Exponent is all 0s. The 11 sign/mantissa bits could be anything, so there are 211
denorms we have to remove from our final total.
Infinities and NaNs: Exponent is all 1s. Just like the denorms, there are 211 more values we
have to remove.
In total, we throw out 2× 211 = 212 values from our original total of 215.
The original idea for this question came from an ex-TA who went on to teach other classes, so
you can’t blame anyone on the current staff for it. It’s a tricky question!

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 11 of 17 CS 61C – Spring 2023

Q4 The R in RISC-V (16 points)
For each of the following instructions, provide a sequence of RISC-V instructions that computes the
equivalent to the given instruction.

• You may not use the instruction itself.
• You may not use any pseudoinstructions.
• You may not have unaligned memory accesses.
• You may assume that rs1 or rs2 are not the same register as rd.
• You may use at most the number of lines we provide.
• You may only have one instruction per line.

Each subpart is independent from one another. We’ve provided sub as an example.

sub rd rs1 rs2

sub_alternative:
xori rd rs2 -1
addi rd rd 1
add rd rs1 rd

Q4.1 (5 points) lbu rd imm(rs1)
You can use rs1, rd, and imm in your answer. You may not modify any registers other than rd.

lbu_alternative:

Solution:
lb rd imm(rs1)

andi rd rd 0x000000FF

Recall that lbu reads 8 bits (1 byte) from memory, writes them to the lower 8 bits of rd, and
doesn’t sign-extend (leaves the upper 24 bits of rd as all zeros).
The closest instruction to lbu is lb. It fetches the same 8 bits from memory and writes them
to the same lower 8 bits of rd, except it sign-extends the upper 24 bits of rd.
Therefore, our solution is to use lb to get the lower 8 bits of the register correctly filled with
the value from memory, and then use bitwise AND to zero out the upper 24 bits.

Midterm (Question 4 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 12 of 17 CS 61C – Spring 2023

(Question 4 continued. . .)

Q4.2 (5 points) bne rs1 rs2 label
You can use rs1, rs2, and label in your answer. You may not modify any registers.

bne_alternative:

continue: # This is a label, but you do not have to use it.

Solution:
Solution 1: Use the continue label.
beq rs1 rs2 continue

jal x0 label

One particularly close instruction to bne (branches not equal) is beq (branch equal). beq takes
the branch every time bne doesn’t, and vice-versa.
We use beq to force the program to not jump (i.e. go to the continue label, the next instruction
after the branch) if the register values are equal. Then, if the register values are not equal, we
don’t go to continue, and we instead move to Line 2. At this point, we do want to go to the
label so we jump to label.
Note: j label is a pseudoinstruction, so it has to be expanded out. Partial credit was given if
your answer was entirely correct but forgot to expand out the pseudoinstruction.
Solution 2: Use blt twice.
blt rs1 rs2 label

blt rs2 rs1 label

If rs1 and rs2 are not equal, one must be greater than the other. We check both cases and
jump to label if one is greater than the other.

Midterm (Question 4 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 13 of 17 CS 61C – Spring 2023

(Question 4 continued. . .)

Q4.3 (6 points) auipc rd imm
You can use rd and imm in your answer. You may only modify rd and t0.
Note: the value of PC used for auipc computation should be the PC of the final instruction in your
answer. For example, if your answer has four lines, you should add imm to the PC of the fourth
line.

auipc_alternative:

temp_label: # This is a label, but you do not have to use it.

Solution:
jal rd temp_label

addi rd rd 8

lui t0 imm

add rd rd t0

This one is tricky. The first thing to remember is what auipc does. First, it takes a 20-bit imm,
and creates an immediate with these 20 bits as the upper 20 bits and 0s as the lower 12 bits.
Then, it adds this new immediate with the current PC.
First, we have to get the value of the current PC. Looking through the reference card, the only
instructions that put the PC in a register are the jump instructions. Here, we use jal to get
the address of the jal instruction, plus 4 (i.e. the address of Line 2 here) into register rd.
However, the question says that we should be adding to the PC of the final instruction in our
answer. Since our answer uses all 4 lines, and we got the address of Line 2, we need to add 8
bytes = 2 instructions to the PC we got, to find the PC of the final instruction.
Now, we can take imm and build the 32-bit value we’ll be adding to PC. Note that imm is 20 bits,
so an addi instruction (with only a 12-bit immediate) cannot handle this number. We have
to use lui to put these 20 bits into the top 20 bits of a register. We choose to use t0 because
that’s the only other register we can modify, and rd is already holding our current PC. (If we
lui’d into rd, we’d mess up the PC we found.)
Finally, we use add to add the PC and the immediate.
Other answers are possible here, e.g. putting the PC in t0 and the immediate in rd before
adding.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 14 of 17 CS 61C – Spring 2023

Q5 FSM (10 points)
The following finite state machine (FSM) should output 1 if the last 3 input bits are 101. Otherwise, it
should output 0.

Astart

B

C

0/0

Q5.1

Q5.2

Q5.3

Q5.4

Q5.5

Example input/output
Input: 1011010111101101001
Output: 0010010100001001000

For each of the transitions above, fill in the appropriate input and output values such that the FSM
behaves as described.

Q5.1 (2 points)

Solution: 1 / 0

Q5.2 (2 points)

Solution: 1 / 0

Q5.3 (2 points)

Solution: 0 / 0

Q5.4 (2 points)

Solution: 1 / 1

Q5.5 (2 points)

Solution: 0 / 0

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 15 of 17 CS 61C – Spring 2023

Q6 SDS (12 points)
Consider the following circuit diagram. SEL is a single bit control signal that updates instantaneously
at the rising edge of every clock cycle and remains stable during any given clock cycle. You may
assume that Input will not cause any hold time violations.

tNOT = 8 ps
tmux = 25 ps

tmultiplier = 1000 ps
tshifter = 2 ps
tclk-q = 30 ps
tsetup = 20 ps

The left shifter combinational logic block shifts the top input by the number of bits indicated by the
bottom input. The shifter in the diagram shifts the output of the connected register left by 1 bit.

Q6.1 (3 points) What is the minimum clock period for the circuit above such that it will always result
in well-defined behavior?

Solution: 1075 ps
The longest path goes through the multiplier, by far the slowest block in the circuit.
From the rising edge of the clock, we have to wait 30 ps for the signal to show up at the register
output. Then, we have to wait 1000 ps for the signal to move through the multiplier, and
another 25 ps for the signal to move through the mux. Finally, we have to reach the rightmost
register 20 ps early (before the next rising edge) to account for the setup time.
In total, this is 30 + 1000 + 25 + 20 = 1075 ps.

Q6.2 (3 points) What is the maximum hold time the registers can have so that there are no hold time
violations in the circuit above? Reminder: you may assume that Input will not cause any hold
time violations.

Solution: 25 ps
The shortest path between any two timed elements is actually the path from the SEL signal,
which changes instantly at the rising edge of the clock, to the right register. This path has
only delay 25 ps from the mux.
If you didn’t see this path, the next-shortest path starts from the rightmost register and goes
around, through the NOT gate, to the top-left register. This path has a delay of 30 ps (clk-to-q
from the rightmost register) and 8 ps (from the NOT gate), for a total of 38 ps. Partial credit
was given for this answer.

Midterm (Question 6 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 16 of 17 CS 61C – Spring 2023

(Question 6 continued. . .)

Eric wants to make one change to increase the circuit’s frequency the most without changing the
behavior of the circuit. He cannot change the delays of any component.

Q6.3 (3 points) Briefly describe a change Eric should make. We will only grade the first 15 words of
your answer.

Solution: Replace multiplier with shifter. (Switch constant from 2 to 1.)
The slowest block by far here is the multiplier, so we should do something about that. In
particular, we don’t need this general-purpose multiplier that can multiply any two inputs
together, if all we’re ever doing is multiplying numbers by 2.
There are a few simpler ways to multiply a number by 2. You could add the number with itself,
using an adder (but an adder isn’t provided here). You could also left-shift the number by 1,
using the shifter (which is provided, and is very fast).

Q6.4 (3 points) What is the new minimum clock period after implementing the change in Q6.3?

Solution: 77 ps
With the multiplier replaced by a shifter, the new longest path starts from either left-side
register, goes through the shifter and the mux, and ends at the rightmost register.
From the rising edge, we wait 30 ps for the output to appear out of the left registers (clk-to-q).
Then we wait another 2 ps for the signal to travel through the shifter, and another 25 ps for
the multiplexer. Finally, we have to get to the rightmost register 20 ps before the next rising
edge to account for setup time. In total, this is 30 + 2 + 25 + 20 = 77 ps.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 17 of 17 CS 61C – Spring 2023

