
CS 61C
Summer 2022

Caroline, Justin, Peyrin
Final

Print your name: ,
(last) (first)

Print your student ID:

You have 110 minutes. There are 8 questions of varying credit (100 points total).

Question: 1 2 3 4 5 6 7 8 Total

Points: 7 16 20 6 15 7 16 13 100

For questions with circular bubbles, you may select only one choice.

Unselected option (completely unfilled)

Only one selected option (completely filled)

For questions with square checkboxes, you may select one or more choices.

You can select

multiple squares

(completely filled)

Anything you write that you cross out will not be graded. Anything you write outside the answer boxes
will not be graded.

If an answer requires hex input, make sure you only use capitalized letters! For example, 0xDEADBEEF
instead of 0xdeadbeef. Please include hex (0x) or binary (0b) prefixes in your answers unless otherwise
specified. For all other bases, do not add any prefixes or suffixes.

Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I am aware
of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will be
reported to the Center for Student Conduct and may further result in, at minimum, negative points on
the exam.

Sign your name:

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 19

Questions begin on the next page.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 19 CS 61C – Summer 2022

Q1 Potpourri (7 points)

Q1.1 (4 points) Select the 2 Boolean expressions from below that are equivalent to each other:

(A+!B)(A+!C)

!B!C +A

A+!(B + C) + (!B+!C)(!B + C)

(A+B)(A+ C)(!BC)

Convert the following 2-byte hex numbers to decimal using signed 2’s complement.

Q1.2 (1 point) 0xFF40

Q1.3 (1 point) 0x009C

Q1.4 (1 point) Consider a 12-bit biased number representation scheme with a bias of −2047.
Which of the following is not a representable number in this scheme?

0

2048

−2048

−1

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 19 CS 61C – Summer 2022

Q2 C: Filed Away (16 points)
You are bored over summer break so you decide to write up a file system in C!
The struct file_item represents a file or a folder. The data union holds either the contents of the file
(a string), or an array of pointers to children file_items.
In this question, assume that pointers are 4 bytes long.

1 typedef struct file_item {
2 char *name;
3 bool is_folder;
4 file_item_data data;
5 } file_item;
6
7 typedef union file_item_data {
8 char contents[X];
9 struct file_item* children[16];
10 } file_item_data;
11
12 // Copies all characters from src to dest including the NULL terminator
13 char *strcpy(char *dest, const char *src);

We set X to be the largest possible value that doesn’t increase the union size. What is the strlen of the
longest string we can store in a single file?

Fill in the code on the next page to create files and folders. Your code must still work even if the input
strings are freed later on. Assume that the input strings will fit inside of a file_item_data union.
You may use fewer lines than provided, but you may not add more lines.

Final (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 19 CS 61C – Summer 2022

(Question 2 continued. . .)

1 /* Creates a file with the given name and contents,
2 and returns a pointer to that file. */
3 file_item* create_file(char* contents, const char *name) {

4

5

6

7

8

9

10

11

12

13
14 }
15 /* Creates a folder with the given name and no children,
16 and returns a pointer to that folder. */
17 file_item* create_folder(const char *name) {

18

19

20

21

22

23

24

25

26

27
28 }

Final (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 19 CS 61C – Summer 2022

(Question 2 continued. . .)

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 19 CS 61C – Summer 2022

Q3 Error-Introducing Code (20 points)
In machine learning, some data scientists add random noise to a training dataset in order to improve
their models. Here, we will take a dataset and transform it into usable data in RISC-V!
The function jitter is defined as follows:

• Inputs:
– a0 holds a pointer to an integer array.
– a1 holds a buffer large enough for n integers (which does not overlap with the array in a0).
– a2 holds n, the length of the arrays.

• Output:
– a0 holds a pointer to the buffer originally in a1. The buffer is filled with the result of calling
noisen on each element in the a0 array.

The function noisen is defined as follows:
• Input: a0 holds an integer.
• Output: a0 returns the integer with noise added.

Eric has provided the correct implementation of jitter below, following calling convention:

1 jitter:
2 # BEGIN PROLOGUE
3 addi sp sp <BLANK 1>
4 # (multiple lines omitted)
5 # END PROLOGUE
6 mv s0 a0
7 mv s1 a1 # Hold beginning of output arr
8 mv s2 a1
9 mv s3 a2 # Hold counter
10 loop:
11 beq s3 x0 end
12 lw a0 0(s0)
13 jal ra noisen
14 sw a0 0(s1)
15 addi s0 s0 4
16 addi s1 s1 4
17 addi s3 s3 -1
18 j loop
19 end:
20 mv a0 s2
21 # BEGIN EPILOGUE
22 # (multiple lines omitted)
23 addi sp sp <BLANK 2>
24 # END EPILOGUE
25 ret

Final (Question 3 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 19 CS 61C – Summer 2022

(Question 3 continued. . .)

Q3.1 (1 point) To follow calling convention, what numbers should go in the blanks?

<BLANK 1>

<BLANK 2>

Q3.2 (1 point) List all registers that Eric needs to save on the stack in order to follow calling convention.

Q3.3 (6 points) Write a sequence of at most two instructions or pseudoinstructions that are equivalent
to the j loop instruction.
You must use a jalr instruction or jalr pseudoinstruction in at least one of the blanks. You may
not use a jal instruction, branch instruction, or jal pseudoinstruction in any of the blanks.

1

2

Final (Question 3 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 19 CS 61C – Summer 2022

(Question 3 continued. . .)

Now, Eric wants to implement noisen to add some random offset to an integer a0. Unfortunately, Eric
only has access to the randomBool function, which takes in no inputs and randomly returns either 1
or 0 in a0.
If Eric implemented noisen to return a0+randomBool(), the integer would always get shifted in the
positive direction. Instead, Eric suggests implementing noisen so that noisen alternates between
returning a0+randomBool() and returning a0-randomBool().

Q3.4 (12 points) Fill in the blanks to complete Eric’s suggested implementation of noisen.
Assume that you can read from and write to any memory addresses, in any section of memory.

1 noisen:
2 addi sp sp -8 # Prologue
3 sw ra 0(sp)
4 sw s0 4(sp)
5 mv s0 a0

6 jal ra randomBool
7 add s0 s0 a0

8 # one RISC-V instruction

9 xori t0 t0 # some immediate

10 # one RISC-V instruction

11 mv a0 s0 # Epilogue
12 lw ra 0(sp)
13 lw s0 4(sp)
14 addi sp sp 8
15 ret

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 19 CS 61C – Summer 2022

Q4 Floating Loading (6 points)
RISC-V has a floating-point extension to support IEEE-754 single-precision floats (1 sign bit, 8 exponent
bits, 23 mantissa bits). The extension adds the instructions in the following table, as well as 32 floating-
point registers (f0 to f31) that each hold 32 bits.
Instruction Name Description
fadd.s rd rs1 rs2 Float ADD rd = rs1 + rs2

fsub.s rd rs1 rs2 Float SUBtract rd = rs1 - rs2

fmul.s rd rs1 rs2 Float MULtiply rd = rs1 * rs2

fdiv.s rd rs1 rs2 Float DIVide rd = rs1 / rs2

fmv.w.x rd rs1 MoVe from Integer rd = ((float) rs1)

Note that the 4 floating-point arithmetic instructions can only operate on floating-point registers, and
floating-point registers cannot be used with base instructions. For example, fadd.s f0 t1 t2 and
addi f0 t1 5 are not valid instructions.
fmv.w.x takes the bitstring in an integer register rs1, and transfers the bitstring over to a floating-point
register rd.
For example, the value 4 is represented in single-precision floating point numbers as 0x4080 0000. If
t0 contained the hexadecimal value 0x4080 0000 and we ran fmv.w.x f0 t0, then f0 would be set
to the floating point value 4.0.

Q4.1 (2 points) Translate the value 3 into its single-precision floating point representation, in hexadeci-
mal.

0x

Q4.2 (4 points) Write instructions to put the float (as close as possible to) 1.33333. . . into a register
f1. You may not use any floating-point instructions outside the five listed above.
Only one RISC-V instruction or pseudoinstruction is allowed per line. You may use fewer lines
than provided, but you may not add more lines.

1

2

3

4

5

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 10 of 19 CS 61C – Summer 2022

Q5 Error-Correcting Code (15 points)
Recall that a Hamming Error Correcting Code can be used to fix single-bit errors. In situations where
data is error-prone (such as on satellites, or in L1 caches), it is often useful to store blocks of data in
Hamming codes, and internally fix errors during memory retrieval.
For this question, we will consider a (7,4) Hamming Code with even parity, which uses 7 total bits to
store 4 data bits. Recall the following bit pattern for the (7,4) Hamming Code:

Bit 1 2 3 4 5 6 7
Transmitted Bit p1 p2 d1 p4 d2 d3 d4

p1 ✓ ✓ ✓ ✓
p2 ✓ ✓ ✓ ✓
p4 ✓ ✓ ✓ ✓

We adopt the convention that bit 1 is the most significant bit of the data, and bit 7 is the least significant
bit.

Q5.1 (3 points) In order to store a full byte, we concatenate two (7,4) Hamming codes, with the first 7
bits storing the most significant nibble of data, and the last 7 bits storing the least significant nibble.
After storing a byte, we retrieve the following raw data (spacing has been added for readability):
0b 1001110 1000011
After error correction, what byte gets returned? Express your answer in hexadecimal.

0x

Final (Question 5 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 11 of 19 CS 61C – Summer 2022

(Question 5 continued. . .)

We construct a circuit that, given a (7,4) Hamming Code, outputs a corrected nibble of data. What
components should be placed in the labeled boxes? Assume that multiple input gates are made by
chaining two-input gates.

Q5.2 (2 points) What goes in Box I?

AND gate

OR gate

XOR gate

Adder gate

Multiplier gate

Multiplexer (with 0 input on top)

Demultiplexer (with 0 input on top)

Priority Encoder (with 0 input on top)

Q5.3 (2 points) What goes in Box II?

AND gate

OR gate

XOR gate

Adder gate

Multiplier gate

Multiplexer (with 0 input on top)

Demultiplexer (with 0 input on top)

Priority Encoder (with 0 input on top)

Q5.4 (2 points) Which four labels among A-H should have the same value?

A

B

C

D

E

F

G

H

Final (Question 5 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 12 of 19 CS 61C – Summer 2022

(Question 5 continued. . .)

Q5.5 (4 points) Assume that the component in Box I has a delay of 3 ns, the component in Box II has
a delay of 5 ns, and that computing the values of labels A-H take 1 ns. If inputs arrive at time 0,
what is the earliest and latest time the output can change in response?

Earliest: ns

Latest: ns

Q5.6 (2 points) Is it more important to add this component around the IMEM or the DMEM? Explain
your reasoning in 20 words or fewer.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 13 of 19 CS 61C – Summer 2022

Q6 00100 (7 points)
Consider the following FSM:

F T

F

F T

0/'c'

0/'s'

1/'x'

0, 1/'x'

1/'6' 0/'1'

1/'x'

0/'c'

1/'x'

On each transition, we receive a 1-bit input, and output a character.
For the following inputs, what string would the FSM output?

Q6.1 (1 point) 000100

Q6.2 (1 point) 0110

Q6.3 (1 point) 010000

Q6.4 (4 points) If the FSM ends in a state labeled T after processing the entire input, then the input is
accepted. Otherwise, the input is rejected.
Write a rule for determining whether an input will be accepted by this FSM.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 14 of 19 CS 61C – Summer 2022

Q7 Virtual Memory (16 points)
Assume the virtual memory address 0xABCD123 maps to the physical address 0x123123.

Q7.1 (1.5 points) What is the maximum possible page size? Include units in your answer.

Q7.2 (1.5 points) What is the minimum possible size of virtual memory? Include units in your answer.

Q7.3 (2.5 points) This subpart is independent of the previous subparts.
We have 1 GiB of virtual memory, 24-bit physical addresses, a 4 KiB page size, and a single-level
page table.
If a page table entry has 4 bits of metadata, how many bits is a page table entry, with no padding?

Final (Question 7 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 15 of 19 CS 61C – Summer 2022

(Question 7 continued. . .)

This subpart is independent of the previous subparts.
We have 4 GiB of virtual memory, 16 MiB of physical memory, a 4 KiB page size, and a single-level
page table. We also have a 2-entry, fully-associative TLB with LRU replacement policy.
Assume that the TLB starts empty, and that physical pages are assigned in order starting with page
0 (e.g. page 0, page 1, etc.). Also assume that we are working with a single-core system that will
context-switch between processes.

Q7.4 (10.5 points) Each row in the table represents a memory access. For each row, fill out the corre-
sponding physical address, and whether the access causes a TLB hit, a TLB miss but page table hit,
or a page fault.
Virtual Address Process ID Physical Address Access Type

TLB Hit
0xDEADBEEF 1 0x000EEF TLB miss, page table hit

Page Fault
TLB Hit

0xDEADBEEF 2 TLB miss, page table hit
Page Fault
TLB Hit

0x0000061C 2 TLB miss, page table hit
Page Fault
TLB Hit

0xDEADB61C 2 TLB miss, page table hit
Page Fault
TLB Hit

0xDEADB61B 1 TLB miss, page table hit
Page Fault
TLB Hit

0xDEADB61C 1 TLB miss, page table hit
Page Fault
TLB Hit

0x0000061A 2 TLB miss, page table hit
Page Fault
TLB Hit

0x0000061A 1 TLB miss, page table hit
Page Fault

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 16 of 19 CS 61C – Summer 2022

Q8 DLP Meets TLP (13 points)
Grace wants to write a function called vector_mul_positive, defined as follows:
Inputs:

• a, a pointer to an integer array
• b, a pointer to an integer array
• N, the length of each array. You may assume that N is a multiple of 4.

Outputs:

• Compute the element-wise products, and output the sum of only the positive products.

Example input: a=[-1, 2, 3, 4], b=[5, 6, -7, 8], and N = 4.
Example output: 2 × 6 + 4 × 8 = 44. Note we skip −1 × 5 and 3 × −7 because these products are
negative.
For this question, youmay use these SIMD functions (__m128i represents packed signed 32-bit integers):

__m128i vmul(__m128i a, __m128i b): Return the result of multiply values in a and b

__m128i vset (int32_t x): Set the 4 signed 32–bit integers to x

__m128i vload (__m128i* a): Return 128-bits of integer data stored at pointer a

void vstore (__m128i* b, __m128i a): Store 128-bits of integer data from a into b

__m128i vcmpgt (__m128i a, __m128i b): Compare a and b for greater-than and return result

__m128i vadd (__m128i a, __m128i b): Return the addition if a and b

__m128i vsub (__m128i a, __m128i b): Return the subtraction of b from a

__m128i vxor (__m128i a, __m128i b): Return the bitwise XOR of a and b

__m128i vor (__m128i a, __m128i b): Return the bitwise OR of a and b

__m128i vand (__m128i a, __m128i b): Return the bitwise AND of a and b

Final (Question 8 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 17 of 19 CS 61C – Summer 2022

(Question 8 continued. . .)

Implement a parallelized version of vector_mul_positive. You may use fewer lines than provided,
but you may not add more lines.

1 int32_t vector_mul_positive(int32_t *a, int32_t *b, int32_t N) {
2 int32_t result[4];

3 __m128i sum_v = ;

4 __m128i cond_v = ;

5 #pragma

6 for () {

7 __m128i curr_v1 = vload();

8 __m128i curr_v2 = vload();

9 __m128i mul = ;

10 __m128i tmp = ;

11 ;

12 #pragma

13 ;
14 }

15 ;

16 ;
17 }

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 18 of 19 CS 61C – Summer 2022

Nothing on this page will be graded.

Is there anything you want us to know?

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 19 of 19 CS 61C – Summer 2022

