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Questions begin on the next page.
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Q1 Potpourri (7 points)

Q1.1 (4 points) Select the 2 Boolean expressions from below that are equivalent to each other:

(A+!B)(A+!C)

!B!C +A

A+!(B + C) + (!B+!C)(!B + C)

(A+B)(A+ C)(!BC)

Solution: First two answers.
Grading: All-or-nothing.
Explanation: TODO

Convert the following 2-byte hex numbers to decimal using signed 2’s complement.

Q1.2 (1 point) 0xFF40

Solution: −192

Grading: All-or-nothing. No credit for equivalent expressions.
Explanation: 0xFF40 = 0b1111 1111 0100 0000 We know that the resulting decimal
representation will be negative, since the MSBit is a 1. Thus, we flip the bits and add 1 to obtain
the positive version of the decimal representation, obtaining 0b0000 0000 1011 1111+1 =
0b0000 0000 1100 0000 = 128 + 64 = 192. Thus our answer is −192.

Q1.3 (1 point) 0x009C

Solution: 156

Grading: All-or-nothing. No credit for equivalent expressions.
Explanation: 0x009C = 0b0000 0000 1001 1100. This is a positive 2’s complement
number since the MSBit is a 0. Thus, we can interpret this value the same way as unsigned,
obtaining 0b0000 0000 1001 1100 = 128 + 16 + 8 + 4 = 156

Final (Question 1 continues. . . )

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 24 CS 61C – Summer 2022



(Question 1 continued. . . )

Q1.4 (1 point) Consider a 12-bit biased number representation scheme with a bias of −2047.
Which of the following is not a representable number in this scheme?

0

2048

−2048

−1

Solution: −2048

Grading: All-or-nothing.
Explanation: A 12-bit unsigned number representation has a representable range of
[0, 4096). A biased 12-bit representation with bias of −2047 has a representable range of
[0 + (−2047), 4096 + (−2047)) = [−2047, 2049). Thus, −2048 is not representable.

Final
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Q2 C: Filed Away (16 points)
You are bored over summer break so you decide to write up a file system in C!
The struct file_item represents a file or a folder. The data union holds either the contents of the file
(a string), or an array of pointers to children file_items.
In this question, assume that pointers are 4 bytes long.

1 typedef struct file_item {
2 char *name;
3 bool is_folder;
4 file_item_data data;
5 } file_item;
6
7 typedef union file_item_data {
8 char contents[X];
9 struct file_item* children[16];
10 } file_item_data;
11
12 // Copies all characters from src to dest including the NULL terminator
13 char *strcpy(char *dest, const char *src);

We set X to be the largest possible value that doesn’t increase the union size. What is the strlen of the
longest string we can store in a single file?

Solution: 63
Grading: +2 for correct answer; +1 for 64 (forgot to consider null terminator)
Explanation: The size of a union is determined by the largest element it can represent (disregarding
alignment rules, which we don’t consider here). In a 32-bit system, pointers are 32 bits (4 bytes).
children is an array of 16 points, which takes up 16 × 4 = 64 bytes. Thus, we have to ensure
char contents[X] does not exceed 64 bytes. Since we know by default 1 byte is defined to be
the size of a char, X = 64 fulfills our goal. strlen(contents) thus would return 63 since it does
not count the null terminator in string length.

Fill in the code on the next page to create files and folders. Your code must still work even if the input
strings are freed later on. Assume that the input strings will fit inside of a file_item_data union.
You may use fewer lines than provided, but you may not add more lines.

Final (Question 2 continues. . . )
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(Question 2 continued. . . )

1 /* Creates a file with the given name and contents,
2 and returns a pointer to that file. */
3 file_item* create_file(char* contents, const char *name) {
4 file_item* new_file = (file_item*) calloc(1, sizeof(file_item));
5 new_file->name = name;
6 strcpy(new_file->data.contents, contents);
7 return new_file;
8 }
9 /* Creates a folder with the given name and no children,
10 and returns a pointer to that folder. */
11 file_item* create_folder(const char *name) {
12 file_item* new_dir = (file_item*) calloc(1, sizeof(file_item));
13 new_dir->name = name;
14 new_dir->is_folder = true;
15 return new_dir;
16 }

Solution: See above.
Grading: see Gradescope assignment for full partial credit; full credit was given for different
implementations that are fully correct with no memory leaks and did not add any additional lines.
create_file Explanation: For create_file, we can directly set the name field because we’re
just setting the field’s value to the pointer value passed in from the const char *name argument.
strcpy(new_file->name, name) is not valid without dynamically allocating space for name
because it’s relying on additional memory to copy name into, as opposed to assigning a pointer
(thus, it’s not assigning name correctly, which is one of the partial credits). Points were also taken off
if the answer allocated space as follows: char* name_mem = (char*) calloc(strlen(name))
because this does not allow the one extra byte for the null terminator to be copied over. char*
name_mem = (char*) calloc(sizeof(name)) is also incorrect since sizeof will return 4,
since it’s taking the size of the pointer.
We cannot directly assign contentswith the assignment operator (=) because we need to ensure the
code still works even if input strings are freed later on (per the instructions). (It also doesn’t work be-
cause you’re assigning the static type char contents[X] to a char*; however the reverse is fine.)
name does not share this problem because it’s typed as const char which means it can’t be freed.
Thus, we can either explicitly dynamically allocate space of strlen(contents) + 1 and then
strcpy(data.contents, contents) or directly copy over the data. To dynamically allocate
space, we can allocate a new variable, file_item_data* new_data = (file_item_data*)
malloc(sizeof(file_item_data*)). For both, we can then strcpy the contents. For the
second option, for the solution to be fully correct, something like new_file->data = *new_data;
free(new_data) must be used in order to correctly copy the struct into the original data field’s
location in memory and free the temporary struct to not have memory leaks before returning the
file.
create_folder Explanation: the two major fields to set here are the name and is_folder fields,
respectively by doing new_dir->name = name and new_dir->is_folder = true.

Final (Question 2 continues. . . )
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(Question 2 continued. . . )

To set new_dir->data.children to NULL correctly, we can either calloc the entire struct, since
all 0 bits is equivalent logically to NULL. Alternatively, we can set the fields manually if we used
malloc to allocate the new folder as follows:

15 ...
16 for (int i = 0; i < 16; i++) {
17 new_dir->data.childreni = NULL;
18 }
19 ...

Final
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Q3 Error-Introducing Code (20 points)
In machine learning, some data scientists add random noise to a training dataset in order to improve
their models. Here, we will take a dataset and transform it into usable data in RISC-V!
The function jitter is defined as follows:

• Inputs:
– a0 holds a pointer to an integer array.
– a1 holds a buffer large enough for n integers (which does not overlap with the array in a0).
– a2 holds n, the length of the arrays.

• Output:
– a0 holds a pointer to the buffer originally in a1. The buffer is filled with the result of calling
noisen on each element in the a0 array.

The function noisen is defined as follows:
• Input: a0 holds an integer.
• Output: a0 returns the integer with noise added.

Eric has provided the correct implementation of jitter below, following calling convention:

1 jitter:
2 # BEGIN PROLOGUE
3 addi sp sp <BLANK 1>
4 # (multiple lines omitted)
5 # END PROLOGUE
6 mv s0 a0
7 mv s1 a1 # Hold beginning of output arr
8 mv s2 a1
9 mv s3 a2 # Hold counter
10 loop:
11 beq s3 x0 end
12 lw a0 0(s0)
13 jal ra noisen
14 sw a0 0(s1)
15 addi s0 s0 4
16 addi s1 s1 4
17 addi s3 s3 -1
18 j loop
19 end:
20 mv a0 s2
21 # BEGIN EPILOGUE
22 # (multiple lines omitted)
23 addi sp sp <BLANK 2>
24 # END EPILOGUE
25 ret

Final (Question 3 continues. . . )
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(Question 3 continued. . . )

Q3.1 (1 point) To follow calling convention, what numbers should go in the blanks?
<BLANK 1>

<BLANK 2>

Solution:
Blank 1: −20

Blank 2: 20
Grading: All-or-nothing per blank.
Explanation: We need to make space for 5 registers on the stack, and each register is 4 bytes
long. (See next subpart for the 5 registers.)

Q3.2 (1 point) List all registers that Eric needs to save on the stack in order to follow calling convention.

Solution: s0, s1, s2, s3, ra.
Grading: 0.2 points for each correct answer. -0.2 points for each additional incorrect register.
Explanation: The function modifies s0, s1, s2, s3. According to calling convention, the
function must leave saved registers unchanged, so we have to save their values at the start of
the function, and restore their values at the end of the function.
Also, line 13 of the function (jal ra noisen) modifies ra. According to calling convention,
ra must stay unchanged throughout the function (so that we know what address/instruction
to return to after the end of the function), so we also need to save its value at the start of the
function, and restore its value at the end of the function.

Q3.3 (6 points) Write a sequence of at most two instructions or pseudoinstructions that are equivalent
to the j loop instruction.
You must use a jalr instruction or jalr pseudoinstruction in at least one of the blanks. You may
not use a jal instruction, branch instruction, or jal pseudoinstruction in any of the blanks.

1

2

Solution:

1 la t0, loop
2 jalr x0, t0, 0 # jr t0

Grading: +3 for correct la usage, +3 for correct jalr with offset 0 (given correct usage of la)
Explanation: j loop is just jal x0, loop. jal instructions are PC-relative so to translate
it to an absolute address, you have to load the address in code for the loop label using the
la (load address) instruction into any register. Then, you have to use jalr with no return
address (since j does not save a return address) on the address loaded into a register with no
offset to execute starting from loop.

Final (Question 3 continues. . . )
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(Question 3 continued. . . )

Now, Eric wants to implement noisen to add some random offset to an integer a0. Unfortunately, Eric
only has access to the randomBool function, which takes in no inputs and randomly returns either 1
or 0 in a0.
If Eric implemented noisen to return a0+randomBool(), the integer would always get shifted in the
positive direction. Instead, Eric suggests implementing noisen so that noisen alternates between
returning a0+randomBool() and returning a0-randomBool().

Q3.4 (12 points) Fill in the blanks to complete Eric’s suggested implementation of noisen.
Assume that you can read from and write to any memory addresses, in any section of memory.

1 noisen:
2 addi sp sp -8 # Prologue
3 sw ra 0(sp)
4 sw s0 4(sp)
5 mv s0 a0
6 jal ra randomBool
7 add s0 s0 a0
8 lb t0 3(ra) # one RISC-V instruction
9 xori t0 t0 64 # some immediate
10 sb t0 3(ra) # one RISC-V instruction
11 mv a0 s0 # Epilogue
12 lw ra 0(sp)
13 lw s0 4(sp)
14 addi sp sp 8
15 ret

Solution: See above.
Grading: +6 points was given to everyone due to logistical and fire alarm issues during the
exam. +2 was given for an attempt to load from/store to the add instruction. +1 was given to
loading/storing relative to ra. +1 was given to accessing the correct instruction in IMEM. +0.5
was given to accessing the correct part of the instruction (lb/sb with offset 3). +1.5 was given
to flipping the correct bit to switch from add to sub.

Explanation: This was an extremely difficult question, so don’t worry if you weren’t sure
how to approach this question. This question relies on the concept of modifying unprotected
instruction memory, to create self-modifying code. The first thing to notice is that line 7 is
currently set to add the random bool to the data; to alternate to a subtraction, we would need
to change this instruction to a sub instruction. The second thing to notice is that add and sub
in RV32 is one bit off from each other, given usage of the same registers. This occurs in the
funct7 with add using 000 0000 and sub using 010 0000 (this was by design, as add and
subtract are so close in function). Thus, our general approach can be described as follows:

• Load the add/sub instruction into a temporary register

• Flip the correct bit in the func7 to change the instruction into a sub/add instruction

• Store the instruction back in its original spot

Final (Question 3 continues. . . )

This content is protected and may not be shared, uploaded, or distributed.

Page 10 of 24 CS 61C – Summer 2022



(Question 3 continued. . . )

Two major challenges arise from this approach: Finding a pointer to that instruction, and
flipping the correct bit.
In order to load the add/sub instruction, we need to find a pointer to the code; further, we
do not have sufficient lines to run a la instruction, so this address must already be stored in
a current register. One insight here is that the ra register is currently pointing to a location
in the code; more precisely, we called jal ra randomBool on line 6. This guarantees that
ra was set to point to line 7, which is incidentally exactly the line we need to load. Note that
this could also work even if there were extra lines between the function call and the add/sub,
using a nontrivial offset.
The second concern is to determine how to flip the correct bit. Note that add/sub differ in
the bit at the 30th position of our instruction. If we attempt to load the entire instruction
and flip the bit with a single xori, we would require an immediate of 0x4000 0000, which
is greater than our maximum immediate of 2047. Thus, we instead need to load part of the
instruction, using a lh or lb. If we use lh to load the top half of the instruction, we would
have to modify the 14th bit position, yielding an immediate of 0x4000 = 16384; thus, we must
use a lb instruction to load the top byte of the instruction. This would allow us to modify the
6th bit position, which corresponds to an immediate of 0x40 = 64.
Thus, the final solution is as follows:

• Load the top byte of the add/sub instruction into a temporary register, using the ra as
a code pointer: lb t0 3(ra)

• Flip the correct bit in the func7 to change the instruction into a sub/add instruction:
xori t0 t0 64

• Store the instruction back in its original spot: sb t0 3(ra)

Final
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Q4 Floating Loading (6 points)
RISC-V has a floating-point extension to support IEEE-754 single-precision floats (1 sign bit, 8 exponent
bits, 23 mantissa bits). The extension adds the instructions in the following table, as well as 32 floating-
point registers (f0 to f31) that each hold 32 bits.
Instruction Name Description
fadd.s rd rs1 rs2 Float ADD rd = rs1 + rs2

fsub.s rd rs1 rs2 Float SUBtract rd = rs1 - rs2

fmul.s rd rs1 rs2 Float MULtiply rd = rs1 * rs2

fdiv.s rd rs1 rs2 Float DIVide rd = rs1 / rs2

fmv.w.x rd rs1 MoVe from Integer rd = ((float) rs1)

Note that the 4 floating-point arithmetic instructions can only operate on floating-point registers, and
floating-point registers cannot be used with base instructions. For example, fadd.s f0 t1 t2 and
addi f0 t1 5 are not valid instructions.
fmv.w.x takes the bitstring in an integer register rs1, and transfers the bitstring over to a floating-point
register rd.
For example, the value 4 is represented in single-precision floating point numbers as 0x4080 0000. If
t0 contained the hexadecimal value 0x4080 0000 and we ran fmv.w.x f0 t0, then f0 would be set
to the floating point value 4.0.

Q4.1 (2 points) Translate the value 3 into its single-precision floating point representation, in hexadeci-
mal.

Solution: 0x4040 0000
First write 3 in binary scientific notation: 3 = 0b1.1 = 0b1.1× 21.
Sign bit is 0b0 since the number is positive.
Exponent is 1. To encode in biased notation, we subtract the bias (for an 8-bit exponent, use
the default bias of −(28−1 − 1) = −127) to get 1 − (−127) = 128. Then encode in 8-bit
unsigned binary to get 0b1000 0000.
Mantissa is 0b1 (dropping the implicit 1). Adding trailing zeros until it’s 23 bits long gives
0b100 0000 0000 0000 0000 0000.
Putting sign, exponent, mantissa together:
0b0 1000 0000 100 0000 0000 0000 0000 0000
Regrouping bits:
0b0100 0000 0100 0000 0000 0000 0000 0000
Converting to hex: 0x4040 0000

Final (Question 4 continues. . . )
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(Question 4 continued. . . )

Q4.2 (4 points) Write instructions to put the float (as close as possible to) 1.33333. . . into a register
f1. You may not use any floating-point instructions outside the five listed above.
Only one RISC-V instruction or pseudoinstruction is allowed per line. You may use fewer lines
than provided, but you may not add more lines.

1 li t4 0x4080 0000
2 li t3 0x4040 0000
3 fmv.w.x f4 t4
4 fmv.w.x f3 t3
5 fdiv.s f1 f4 f3

Solution: Put the bit patterns for 4 (in floating-point) and 3 (in floating-point) into two integer
registers. For clarity, we used t4 to hold 4 and t3 to hold 3 in our solution.
Then, move these bit patterns into floating-point registers. For clarity, we used f4 to hold 4
and f3 to hold 3 in our solution.
Finally, use floating-point division to compute 4/3 and put the result in f1.
Note that something like li t4 4 and li t4 3 would not work; these would put the bit
patterns 0x0000 0004 and 0x0000 0003 into floating-point registers, but when interpreted
in floating-point, these bit patterns do not represent the numbers 4 and 3.
Note that we have to use li t4 0x4080 0000 or lui x4 0x40800 to change the upper 20
bits of the register. Using an instruction like addi won’t work because I-type immediates are
only 12 bits long.
Some alternate solutions do exist, such as computing 1 + 1/3, or somehow computing that
0x3FAA AAAB is the floating-point number closest to 4/3 (how you’d compute this is out-of-
scope) and hard-coding this number into f1.

Final
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Q5 Error-Correcting Code (15 points)
Recall that a Hamming Error Correcting Code can be used to fix single-bit errors. In situations where
data is error-prone (such as on satellites, or in L1 caches), it is often useful to store blocks of data in
Hamming codes, and internally fix errors during memory retrieval.
For this question, we will consider a (7,4) Hamming Code with even parity, which uses 7 total bits to
store 4 data bits. Recall the following bit pattern for the (7,4) Hamming Code:

Bit 1 2 3 4 5 6 7
Transmitted Bit p1 p2 d1 p4 d2 d3 d4

p1 ✓ ✓ ✓ ✓
p2 ✓ ✓ ✓ ✓
p4 ✓ ✓ ✓ ✓

We adopt the convention that bit 1 is the most significant bit of the data, and bit 7 is the least significant
bit.

Q5.1 (3 points) In order to store a full byte, we concatenate two (7,4) Hamming codes, with the first 7
bits storing the most significant nibble of data, and the last 7 bits storing the least significant nibble.
After storing a byte, we retrieve the following raw data (spacing has been added for readability):
0b 1001110 1000011
After error correction, what byte gets returned? Express your answer in hexadecimal.

Solution: 0x43
Grading: +1.5 for each correct byte, +3 for fully correct.
Explanation: 0b 1001110 gives us: p1 = 1, p2 = 0, d1 = 0, p4 = 1, d2 = 1, d3 = 1, and
p4 = 0. Going through the parity:

• Parity 1: p1 ⊕ d1 ⊕ d2 ⊕ d4 = 1⊕ 0⊕ 1⊕ 0 = 0

• Parity 2: p2 ⊕ d1 ⊕ d3 ⊕ d4 = 0⊕ 0⊕ 1⊕ 0 = 1

• Parity 4: p4 ⊕ d2 ⊕ d3 ⊕ d4 = 1⊕ 1⊕ 1⊕ 0 = 1

To find the erroneous bit, we sum up the parity indices where it was incorrect (not even parity,
AKA the XOR returned 1): 2 + 4 = 6 so we flip bit 6, giving us the bitstring 0b 1001100. We
can check this by substituting back d3 = 0 into our parity calculations, which since we’re now
flipping 1 to 0, gives us an XOR or 0 on both parity 2 and parity 4. Thus our final datastring is
0b 0100, or 0x4.
We do the same thing for 0b 1000011, giving us p1 = 1, p2 = 0, d1 = 0, p4 = 0, d2 = 0,
d3 = 1, and p4 = 1. Going through the parity:

• Parity 1: p1 ⊕ d1 ⊕ d2 ⊕ d4 = 1⊕ 0⊕ 0⊕ 1 = 0

• Parity 2: p2 ⊕ d1 ⊕ d3 ⊕ d4 = 0⊕ 0⊕ 1⊕ 1 = 0

• Parity 4: p4 ⊕ d2 ⊕ d3 ⊕ d4 = 0⊕ 0⊕ 1⊕ 1 = 0

The parity is correct so our datastring is 0b 0011 or 0x3.
Thus our final data byte is 0x43.

Final (Question 5 continues. . . )
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(Question 5 continued. . . )

We construct a circuit that, given a (7,4) Hamming Code, outputs a corrected nibble of data. What
components should be placed in the labeled boxes? Assume that multiple input gates are made by
chaining two-input gates.

Q5.2 (2 points) What goes in Box I?

AND gate

OR gate

XOR gate

Adder gate

Multiplier gate

Multiplexer (with 0 input on top)

Demultiplexer (with 0 input on top)

Priority Encoder (with 0 input on top)

Solution: Cascaded XOR gates can be used to determine the parity of the input bits; XOR
returns 1 if the number of input “1” bits is odd, and 0 if the number of input “1” bits is even.
This matches our definition of parity.
Note: On the paper exam, the question prompt was mistakenly printed as “Select 1 choice” but
this was clarified at the start of the exam.

Final (Question 5 continues. . . )
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(Question 5 continued. . . )

Q5.3 (2 points) What goes in Box II?

AND gate

OR gate

XOR gate

Adder gate

Multiplier gate

Multiplexer (with 0 input on top)

Demultiplexer (with 0 input on top)

Priority Encoder (with 0 input on top)

Solution: We need to output the corrected data based on the parity bits; this can only be
done using a mux. Note: On the paper exam, the question prompt was mistakenly printed as
“Select 2 choices” but this was clarified at the start of the exam.

Q5.4 (2 points) Which four labels among A-H should have the same value?

A

B

C

D

E

F

G

H

Solution: A, B, C, and E. These correspond to a parity bit value of 0, 1, 2, and 4, respectively.
The 1, 2, and 4 cases occur when a bit error occurred in a parity bit; thus, the actual data is
correct, so we output the data uncorrected. The 0 case is when no error is detected, so this
should also output the data uncorrected. The remaining cases happen when one of the data
bits got corrupted, which thus needs to be fixed before returning.

Q5.5 (4 points) Assume that the component in Box I has a delay of 3 ns, the component in Box II has
a delay of 5 ns, and that computing the values of labels A-H take 1 ns. If inputs arrive at time 0,
what is the earliest and latest time the output can change in response?
Earliest:
Latest:

Solution:
Earliest: 6 ns. The values of A-H are computed at 1 ns. Then after the 5 ns delay of Box 2, the
output changes.
Latest: 8 ns. The inputs change at 0 ns. Then after the 3 ns delay of Box 1, the bottom input to
Box II changes. Then after the 5 ns delay of Box 2, the output changes.

Final (Question 5 continues. . . )
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(Question 5 continued. . . )

Q5.6 (2 points) Is it more important to add this component around the IMEM or the DMEM? Explain
your reasoning in 20 words or fewer.

Solution: Points were given for either answer with sufficient justification.
Errors in the IMEM are often catastrophic (since a changed instruction can cause significant
changes to a program’s behavior), while DMEM errors can generally be corrected in software
by computing the target value three times and returning the most common result. Further, the
IMEM is in use more often than the DMEM, since every instruction uses the IMEM, while the
DMEM is used only for loads and stores.
Errors in the DMEM, on the other hand, tend to be more common. Generally speaking, DMEM
data is designed to be modifiable, with write support necessary. Data is more likely to be
corrupted during a write or in volatile memory, so we can expect the DMEM to have more
errors. Further, not all binary values correspond to a valid instruction, so there is already some
error detection built-in to the IMEM; thus, it is more likely that an IMEM error gets caught
immediately.
Overall, IMEM errors tend to be more catastrophic, while DMEM errors tend to be more
frequent.

Final
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Q6 00100 (7 points)
Consider the following FSM:

F T

F

F T

0/'c'

0/'s'

1/'x'

0, 1/'x'

1/'6' 0/'1'

1/'x'

0/'c'

1/'x'

On each transition, we receive a 1-bit input, and output a character.
For the following inputs, what string would the FSM output?

Q6.1 (1 point) 000100

Solution: css61c
Grading: All-or-nothing.

Q6.2 (1 point) 0110

Solution: c6xx
Grading: All-or-nothing.

Q6.3 (1 point) 010000

Solution: c61ccc
Grading: All-or-nothing.

Q6.4 (4 points) If the FSM ends in a state labeled T after processing the entire input, then the input is
accepted. Otherwise, the input is rejected.
Write a rule for determining whether an input will be accepted by this FSM.

Solution: An input is accepted if it contains at most one 1 bit, and if neither the leading nor
trailing bit is a 1. All other inputs are not accepted.
We can deduce this from the FSM by noting that to reach the first T state on the left, we have
to start by inputting a 0. Then, any further 0s keep us in the T state.
At this point, we could optionally choose to input a 1, which moves us right into the F state, as
long as we then input another 0 to move us into the second T state on the right. Once we’re
in the second T state on the right, we can add any further 0s to keep us in the T state.

Final
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Q7 Virtual Memory (16 points)
Assume the virtual memory address 0xABCD123 maps to the physical address 0x123123.

Q7.1 (1.5 points) What is the maximum possible page size? Include units in your answer.

Solution: 213 bytes.
The virtual memory address and the physical memory address share the lower 13 bits. The
page size cannot be larger, because that would mean the the addresses would refer to a different
offset within the page.

Q7.2 (1.5 points) What is the minimum possible size of virtual memory? Include units in your answer.

Solution: 228 bytes. The virtual memory address is 28 bits long if all leading 0s are removed,
so the virtual memory must have at least 228 bytes.

Q7.3 (2.5 points) This subpart is independent of the previous subparts.
We have 1 GiB of virtual memory, 24-bit physical addresses, a 4 KiB page size, and a single-level
page table.
If a page table entry has 4 bits of metadata, how many bits is a page table entry, with no padding?

Solution: Physical memory is 24 bits, offset is 12 bits, leaves 12 bits of PPN + 4 bits of metadata
= 16 bits.

Final (Question 7 continues. . . )
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(Question 7 continued. . . )

This subpart is independent of the previous subparts.
We have 4 GiB of virtual memory, 16 MiB of physical memory, a 4 KiB page size, and a single-level
page table. We also have a 2-entry, fully-associative TLB with LRU replacement policy.
Assume that the TLB starts empty, and that physical pages are assigned in order starting with page
0 (e.g. page 0, page 1, etc.). Also assume that we are working with a single-core system that will
context-switch between processes.

Q7.4 (10.5 points) Each row in the table represents a memory access. For each row, fill out the corre-
sponding physical address, and whether the access causes a TLB hit, a TLB miss but page table hit,
or a page fault.
Virtual Address Process ID Physical Address Access Type

TLB Hit
0xDEADBEEF 1 0x000EEF TLB miss, page table hit

Page Fault
TLB Hit

0xDEADBEEF 2
0x001EEF

TLB miss, page table hit

Page Fault
TLB Hit

0x0000061C 2
0x00261C

TLB miss, page table hit

Page Fault
TLB Hit

0xDEADB61C 2
0x00161C

TLB miss, page table hit

Page Fault
TLB Hit

0xDEADB61B 1
0x00061B

TLB miss, page table hit

Page Fault
TLB Hit

0xDEADB61C 1
0x00061C

TLB miss, page table hit

Page Fault
TLB Hit

0x0000061A 2
0x00261A

TLB miss, page table hit

Page Fault
TLB Hit

0x0000061A 1
0x00361A

TLB miss, page table hit

Page Fault

Solution:

For this entire question, page size is 212 bytes, so we need 12 bits to uniquely find a byte within a
page. This means that the bottom 12 bits = 3 hex digits are the offset, which stay unchanged when
translating from virtual to physical address.

Final (Question 7 continues. . . )
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(Question 7 continued. . . )

We have 232 bytes of virtual memory, so virtual addresses are 32 bits long. This leaves the top
32− 12 = 20 bits = 5 hex digits as the VPN.
We have 224 bytes of physical memory, so physical addresses are 24 bits long. This leaves the top
24− 12 = 12 bits = 3 hex digits as the PPN.
Row 2: Process 2 is accessing virtual page 0xDEADB. Process 2 has never requested this page before,
so it’s a page fault and a new physical page, 0x001, is allocated. The TLB now maps 0xDEADB to
0x001.
Row 3: Process 2 is accessing virtual page 0x00000. Process 2 has never requested this page before,
so it’s a page fault and a new physical page, 0x002, is allocated. The TLB now maps 0xDEADB to
0x001 and 0x00000 to 0x002.
Row 4: Process 2 is accessing virtual page 0xDEADB. We have this VPN in our TLB, so we have a
TLB hit and we can translate the VPN to 0x001.
Row 5: Process 1 is accessing virtual page 0xDEADB. We switched processes, so our TLB is empty
again. However, process 1 has requested page 0xDEADB before in row 1, so we can look in the page
table and translate VPN 0xDEADB to PPN 0x000. The TLB now maps 0xDEADB to 0x000.
Row 6: Process 1 is accessing virtual page 0xDEADB. We have this VPN in our TLB, so we have a
TLB hit and we can translate the VPN to 0x000.
Row 7: Process 2 is accessing virtual page 0x00000. We switched processes, so our TLB is empty
again. However, process 2 has requested page 0x00000 before in row 3, so we can look in the page
table and translate VPN 0x00000 to PPN 0x002. The TLB now maps 0x00000 to 0x002.
Row 8: Process 1 is accessing virtual page 0x00000. We switched processes, so our TLB is empty
again. Also, process 1 has never requested virtual page 0x00000 before. This is a page fault, and
causes a new physical page, 0x003, to be allocated.
Grading:
Row 2: We’re looking for the highest unused page number. Since this is the first blank and the
filled-in row used 0x000, this page number must be 0x001 for credit.
Row 3: We’re looking for the highest unused page number. This might be 0x001 if the student put
0x000 in row 2, or 0x002, but no higher than that.
Row 4: We’re looking for the same page number used in Row 2, which could be 0x000 or 0x001.
Row 5: We’re looking for the same page number used in Row 1, which must be 0x000.
Row 6: We’re looking for the same page number used in Row 1, which must be 0x000.
Row 7: We’re looking for the same page number used in Row 3, which could be 0x001 or 0x002.
Row 8: We’re looking for the highest unused page number, which could be 0x001 (unlikely), 0x002,
and 0x003.
Online exams had an alternate row 7, where the address was 0xDEADB61A. Alternate solution:
0xDEADB61A maps to 0x00161A. This page was previously seen mapping to physical page 1, in
Row 4. This is a TLB miss, page table hit (like the original version).
Online exams had an alternate row 8, where the address was 0xDEADB61A. Alternate solution:
0xDEADB61A maps to 0x00061A. This page was previously seen mapping to physical page 0, in
Row 1. This is a TLB miss, page table hit (no longer a page fault).

Final
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Q8 DLP Meets TLP (13 points)
Grace wants to write a function called vector_mul_positive, defined as follows:
Inputs:

• a, a pointer to an integer array
• b, a pointer to an integer array
• N, the length of each array. You may assume that N is a multiple of 4.

Outputs:

• Compute the element-wise products, and output the sum of only the positive products.

Example input: a=[-1, 2, 3, 4], b=[5, 6, -7, 8], and N = 4.
Example output: 2 × 6 + 4 × 8 = 44. Note we skip −1 × 5 and 3 × −7 because these products are
negative.
For this question, youmay use these SIMD functions (__m128i represents packed signed 32-bit integers):

__m128i vmul(__m128i a, __m128i b): Return the result of multiply values in a and b

__m128i vset (int32_t x): Set the 4 signed 32–bit integers to x

__m128i vload (__m128i* a): Return 128-bits of integer data stored at pointer a

void vstore (__m128i* b, __m128i a): Store 128-bits of integer data from a into b

__m128i vcmpgt (__m128i a, __m128i b): Compare a and b for greater-than and return result

__m128i vadd (__m128i a, __m128i b): Return the addition if a and b

__m128i vsub (__m128i a, __m128i b): Return the subtraction of b from a

__m128i vxor (__m128i a, __m128i b): Return the bitwise XOR of a and b

__m128i vor (__m128i a, __m128i b): Return the bitwise OR of a and b

__m128i vand (__m128i a, __m128i b): Return the bitwise AND of a and b

Final (Question 8 continues. . . )
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(Question 8 continued. . . )

Implement a parallelized version of vector_mul_positive. You may use fewer lines than provided,
but you may not add more lines.

1 int32_t vector_mul_positive(int32_t *a, int32_t *b, int32_t N) {
2 int32_t result[4];
3 __m128i sum_v = vset(0);
4 __m128i cond_v = vset(0);
5 #pragma omp parallel for
6 for (int i=0; i<N; i+=4) {
7 __m128i curr_v1 = vload(a+i);
8 __m128i curr_v2 = vload(b+i);
9 __m128i mul = vmul(curr_v1, curr_v2);
10 __m128i tmp = vcmpgt(mul, cond_v);
11 tmp = vand(tmp, mul);
12 #pragma omp critical
13 sum_v = vadd(sum_v, tmp);
14 }
15 vstore(result, sum_v);
16 return result[0] + result[1] + result[2] + result[3];
17 }

Solution:

Alternate solution: Line 4 is vset(-1), and line 10 is vcmpgt(mul, vmul(mul, cond_v). Instead
of comparing the element-wise products to 0, you could compare the element-wise dot products to
their inverses. If a number is greater than its inverse, the number must be positive (e.g. 1 is greater
than -1, so 1 is positive, but -5 is not greater than 5, so -5 is negative).
Alternate solution: Line 6 is int i=0; i<N/4; i++, line 7 is a+(i*4), and line 8 is b+(i*4).
Alternate solution: Line 11 puts the result vector of vand into another vector variable (e.g. tmp
or some newly-declared variable like __m128i mask, and line 13 uses that variable (e.g. sum_v =
vadd(sum_v, mask)).

Final
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Nothing on this page will be graded.

Is there anything you want us to know?
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