
CS 61C
Summer 2022

Caroline, Justin, Peyrin
Midterm

Print your name: ,
(last) (first)

Print your student ID:

You have 110 minutes. There are 5 questions of varying credit (100 points total).

Question: 1 2 3 4 5 Total

Points: 20 25 20 25 10 100

For questions with circular bubbles, you may select only one choice.

Unselected option (completely unfilled)

Only one selected option (completely filled)

For questions with square checkboxes, you may select one or more choices.

You can select

multiple squares

(completely filled)

Anything you write that you cross out will not be graded. Anything you write outside the answer boxes
will not be graded.

If an answer requires hex input, make sure you only use capitalized letters! For example, 0xDEADBEEF
instead of 0xdeadbeef. Please include hex (0x) or binary (0b) prefixes in your answers unless otherwise
specified. For all other bases, do not add any prefixes or suffixes.

Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I am aware
of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will be
reported to the Center for Student Conduct and may further result in, at minimum, negative points on
the exam.

Sign your name:

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 16

Q1 Potpourri (20 points)

Q1.1 (6 points) Translate the following decimal numbers into 8-bit two’s complement, unsigned, and
sign-magnitude representations in the table below.
If a translation is not possible, please write "N/A". Write your final answer in hexadecimal
format, including the relevant prefix.
Decimal Two’s Complement Unsigned Sign-Magnitude

128

-12

Q1.2 (2 points) Convert 83 to the following bases as an unsigned number. Remove any leading zeros.
Binary Hex

0b 0x

Q1.3 (3 points) Which of the following representations have more than one representation of 0? Select
all that apply.

(A) Two’s complement

(B) Sign-magnitude

(C) An IEEE-754 standard double-precision float

(D) Bias notation

(E) None of the above

Q1.4 (3 points) Which program resolves pseudoinstructions?

(A) Assembler

(B) Interpreter

(C) Linker

(D) Loader

(E) None of the above

Midterm (Question 1 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 16 CS 61C – Summer 2022

(Question 1 continued. . .)

Q1.5 (3 points) Which program can output pseudoinstructions?

(A) Assembler

(B) Compiler

(C) Linker

(D) Preprocessor

(E) None of the above

Q1.6 (3 points) Which program initializes registers to their default value?

(A) Assembler

(B) Compiler

(C) Interpreter

(D) Linker

(E) None of the above

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 16 CS 61C – Summer 2022

Q2 Trie, Trie Again (25 points)
In this problem, we will be implementing a trie. A trie is a data structure that stores strings in a tree-like
structure, with each character in the string corresponding to a node. If two strings start with the same
characters, the nodes for those characters will be shared between the two strings.
For each character in the string, our trie will create an AlphaTrieNode struct with two fields:

• A boolean last that indicates whether or not the character is the last character in a string. In the
diagram, nodes with last set to true are shaded.

• An array next of 26 AlphaTrieNode pointers. Each element in the next array corresponds to a
letter a-z. Each array element is either a pointer to the node corresponding to that letter, or NULL
if there is no node for that letter.

C

A

R

This trie on the left stores one word “car”.
The last field is false in the C and A nodes, and true in the
R node.
In the C node, next[0] should hold the address of the A node,
and next[1], next[2], ..., next[25] should all be NULL.

C

A

R L

L

O

C

We want to insert “calloc” into the trie. Note that “car” and
“calloc” both start with “ca—”, so we don’t create new nodes for
those two characters. However, “—lloc” is different from “—r”,
so our trie creates new nodes for those four characters.
In the A node, next[11] (for L) and next[17] (for R) contain
pointers, and all other pointers in the next array are NULL.

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 16 CS 61C – Summer 2022

(Question 2 continued. . .)

S

U

S

C

A

R L

L

O

C

We want to insert “sus” in the trie. “sus” starts with a different
character than the words so far, so we create new nodes for “s”,
“u”, and “s”, starting from the root node. Note that the second “s”
corresponding to the last character of “sus” is shaded (last set
to true).

S

U

S

C

E

L

L

A

R L

L

O

C

We want to insert “cell” in the trie. “cell” starts with “c”, but does
not start with “ca—”. We create new nodes for “—ell” and set
last in the second “l” to be true.
Note that the “-ll-” in “calloc” and the “-ll” in “cell” are not shared,
because the 2nd character of each word is different.

S

U

S

C

E

L

L

A

R L

L

O

C

We want to insert “call” to our trie. “call” starts with the same
letters as “calloc”, so we don’t need to add any nodes. However,
even though the nodes are already there, there is nothing to
indicate “call” is a word in the trie. We change this by updating
the last field of the second “l” in “calloc” to be true. This
indicates that “l” is now the end of a word.

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 16 CS 61C – Summer 2022

(Question 2 continued. . .)

For tries of AlphaTrieNodes, assume that:
1. Only lowercase letters (a-z) are supported. The ASCII values for these characters are [97,122],

inclusive.
2. If multiple instances of the same string are inserted, it should not affect the trie.
3. The string argument word is a well-formatted string composed of only lowercase letters a-z.
4. The node argument is the root node of a properly initialized trie.

typedef struct AlphaTrieNode {
bool last;
struct AlphaTrieNode* next[26];

} AlphaTrieNode;

int main() {
AlphaTrieNode* root = ... // instantiation of root (code not shown)

// should insert "crewmate" into the trie
insert(root, "crewmate");

// should return false since "imposter" has not been added to the trie
contains(root, "imposter");

// should return true since "crewmate" is in the trie
contains(root, "crewmate");

return 0;
}

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 16 CS 61C – Summer 2022

(Question 2 continued. . .)

Implement the contains and insert functions below.

Q2.1 (5 points) contains takes in a trie root node (node), and a pointer to a string (word). It should
return true if word is in the trie, and false otherwise.

1 bool contains(AlphaTrieNode* node, char* word) {
2 for (int i = 0; i < strlen(word); i++) {

3 int char_to_ascii = ;

4 if (node-> == NULL) {

5 return ;
6 }

7 node = -> ;
8 }

9 return node-> ;
10 }

Q2.2 (8 points) insert takes in a trie root node (node), and a pointer to a string (word). It should insert
the word into the trie.

1 void insert(AlphaTrieNode* node, char* word) {
2 for (int i = 0; i < strlen(word); i++) {

3 int char_to_ascii = ;

4 if (node-> == NULL) {

5 node-> = calloc(,);
6 }

7 node = node-> ;
8 }

9 node-> = ;
10 }

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 16 CS 61C – Summer 2022

(Question 2 continued. . .)

Consider an alternate trie implementation that supports all 256 ASCII characters instead of just 26
lowercase characters. We define a new struct, ASCIITrieNode, as follows:

typedef struct ASCIITrieNode {
bool last;
struct ASCIITrieNode* next[256];

} ASCIITrieNode;

We would like to write a function that converts a trie of AlphaTrieNodes to a trie of ASCIITrieNodes.
The function should also free all AlphaTrieNodes in the process. Youmay assume that all AlphaTrieNodes
are properly initialized.
Below, we have 3 implementations of this conversion function. For each implementation, determine
whether or not it is a valid implementation. If the implementation is not valid, please provide a brief
explanation (10 words or fewer).

Q2.3 (4 points)

ASCIITrieNode* convert(AlphaTrieNode* node) {
if (node == NULL) {

return NULL;
}
ASCIITrieNode* new_node = malloc(sizeof(ASCIITrieNode));
for (int i = 0; i < 26; i++) {

new_node->next[i + 97] = convert(node->next[i]);
}
new_node->last = node->last;
free(node);
return new_node;

}

(A) Valid (B) Invalid

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 16 CS 61C – Summer 2022

(Question 2 continued. . .)

Q2.4 (4 points)

ASCIITrieNode* convert(AlphaTrieNode* node) {
if (node == NULL) {

return NULL;
}
ASCIITrieNode* new_node = calloc(1, sizeof(ASCIITrieNode));
for (int i = 0; i < 26; i++) {

new_node->next[i + 97] = convert(node->next[i]);
}
new_node->last = node->last;
free(node);
return new_node;

}

(A) Valid (B) Invalid

Q2.5 (4 points)

ASCIITrieNode* convert(AlphaTrieNode* node) {
if (node == NULL) {

return NULL;
}
ASCIITrieNode* new_node = realloc(node, sizeof(ASCIITrieNode));
for (int i = 0; i < 256; i++) {

new_node->next[i] = NULL;
}
for (int j = 0; j < 26; j++) {

new_node->next[j + 97] = convert(node->next[j]);
}
return new_node;

}

(A) Valid (B) Invalid

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 16 CS 61C – Summer 2022

Q3 Can You Fix My Float? (20 points)
Consider a 16-bit fixed point system with 1 sign bit, 5 integer bits, and 10 fraction bits. The five integer
bits work just like a 5 bit unsigned integer. The 10 fraction bits continue where the integer bits left
off, representing 2−1, 2−2, . . ., 2−10. For example, the bit representation 0b0 01101 1010000000
represents (23 + 22 + 20) + (2−1 + 2−3) = 13.625.
In this question, we will compare this fixed-point system to a 16-bit floating point system that follows
all conventions of IEEE-754 floating point numbers (including denorms, NaNs, etc.), with 5 bits of
exponent and an exponent bias of -15.

Q3.1 (3 points) Write −22.375 in hex using the 16-bit floating point system described above.

0x

Q3.2 (3 points) Write −22.375 in hex using the 16-bit fixed point system described above.

0x

Q3.3 (3 points) Howmany numbers in the range [16, 64) (including 16, excluding 64) can be represented
by the floating point system described above?

Q3.4 (3 points) Howmany numbers in the range [16, 64) (including 16, excluding 64) can be represented
by the fixed point system described above?

Q3.5 (4 points) What is the smallest positive number representable by the above fixed point system but
not the above floating point system?
Express your answer as a sum or difference of powers of two (e.g. 24 − 22 + 2−1).

Q3.6 (4 points) What is the largest positive number representable by both systems described above?
Express your answer as a sum or difference of powers of two (e.g. 24 − 22 + 2−1).

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 10 of 16 CS 61C – Summer 2022

This page intentionally left (mostly) blank.
Please do not tear off any pages from the exam.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 11 of 16 CS 61C – Summer 2022

Q4 Even Stevens (25 points)
You are given a list of numbers to add up by your math professor. However, your professor doesn’t like
odd numbers, so they ask that you only add up the even ones.
The function add_even_numbers is defined as follows:

• Inputs:
– a0: the address of the start of an array of 32-bit integers
– a1: the number of integers in the array

• Output:
– a0: the sum of all even numbers in the array

Example: Suppose input a0 points to [4, 5, 6, 7], and input a1 holds 4. Then output a0 holds 10
(4 + 6).

Q4.1 (15 points) Fill in the blanks in the RISC-V code below. You may not need all the blanks. Each line
should contain exactly one instruction or pseudo-instruction.

1 add_even_numbers:

2 addi t0, x0, 0 # set t0 to be the running sum

3 loop:

4

5 lw t1 0(a0) # set t1 to be the number in the array

6

7

8

9

10

11 skip:

12

13

14 j loop

15 end:

16

17

Midterm (Question 4 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 12 of 16 CS 61C – Summer 2022

(Question 4 continued. . .)

Q4.2 (5 points) Translate the j loop instruction under the skip label to hexadecimal. Assume that
every line in the above code is filled with exactly one instruction (or pseudo-instruction that
expands to one instruction).

0x

Optionally, for partial credit, write the offset in bytes as a decimal number in the box below.

bytes

Q4.3 (5 points) Suddenly, your professor starts hating prime numbers, so now they only want you to
sum up the non-prime numbers.
Assume you are given a function is_prime that follows calling convention. What combination of
modifications to the add_even_numbers function is needed in order to sum up all the non-prime
numbers in the array? Select all that apply.

(A) Use another register to track the number of times is_prime is called

(B) Replace the code used to check if the number is even with a call to is_prime

(C) Decrement the stack pointer by some amount at the start of the function, and increment
the stack pointer by the same amount at the end of the function

(D) Save some values in a registers instead of t registers

(E) Save some values in s registers instead of t registers

(F) Save used a registers onto the stack at the beginning of the function

(G) Save used s registers onto the stack at the beginning of the function

(H) Save used t registers onto the stack at the beginning of the function

(I) Save another register (besides the a, s, or t registers) onto the stack at the beginning of
the function

(J) Restore at least one register from the stack at the end of the function

(K) None of the above

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 13 of 16 CS 61C – Summer 2022

Q5 TF? (10 points)
Simplify the Boolean logic for the following circuits. Your answer may only use the following characters:

Character Description
A, B, C, D Inputs
* AND
+ OR
^ XOR
~ NOT
() Parentheses
0, 1 Constants

Example: the following circuit, which has Boolean logic A * A, can be simplified to out0 = A.

Q5.1 (2 points)

Q5.2 (4 points)

Midterm (Question 5 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 14 of 16 CS 61C – Summer 2022

(Question 5 continued. . .)

Q5.3 (4 points)

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 15 of 16 CS 61C – Summer 2022

Nothing on this page will be graded.

Is there anything you want us to know?

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 16 of 16 CS 61C – Summer 2022

