
CS 61C
Summer 2022

Caroline, Justin, Peyrin
Midterm

Solutions last updated: Saturday, March 2, 2024
Print your name: ,

(last) (first)

Print your student ID:

You have 110 minutes. There are 5 questions of varying credit (100 points total).

Question: 1 2 3 4 5 Total

Points: 20 25 20 25 10 100

For questions with circular bubbles, you may select only one choice.

Unselected option (completely unfilled)

Only one selected option (completely filled)

For questions with square checkboxes, you may select one or more choices.

You can select

multiple squares

(completely filled)

Anything you write that you cross out will not be graded. Anything you write outside the answer boxes
will not be graded.

If an answer requires hex input, make sure you only use capitalized letters! For example, 0xDEADBEEF
instead of 0xdeadbeef. Please include hex (0x) or binary (0b) prefixes in your answers unless otherwise
specified. For all other bases, do not add any prefixes or suffixes.

Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I am aware
of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will be
reported to the Center for Student Conduct and may further result in, at minimum, negative points on
the exam.

Sign your name:

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 22

Q1 Potpourri (20 points)

Q1.1 (6 points) Translate the following decimal numbers into 8-bit two’s complement, unsigned, and
sign-magnitude representations in the table below.
If a translation is not possible, please write "N/A". Write your final answer in hexadecimal
format, including the relevant prefix.
Decimal Two’s Complement Unsigned Sign-Magnitude

128
N/A 0x80 N/A

-12
0xF4 N/A 0x8C

Solution:
8-bit two’s complement numbers can represent numbers up to 27 − 1 = 127, so 128 cannot be
represented.
128 = 27, so in unsigned representation, we have 0b1000 0000 = 0x80.
Intuitively, an 8-bit sign-magnitude number can only use 7 bits to represent the number (leaving
1 bit for the sign). A 7-bit unsigned number can represent numbers up to 28 − 1 = 127, so 128
cannot be represented.
12 in unsigned 8-bit binary is 0b0000 1100. Since we want to represent -12 in two’s comple-
ment binary, we’ll flip the bits: 0b1111 0011, and add one: 0b1111 0100. Converting to hex,
we get 0xF4.
Negative numbers cannot be represented as unsigned.
An 8-bit sign-magnitude number uses 7 bits to represent the magnitude of the number. 12 in
unsigned 7-bit binary is 0b000 1100. Then we add the sign bit, which is 0b1 since we want
to represent a negative number. In total, we get 0b1000 1100, which is 0x8C in hex.

Midterm (Question 1 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 22 CS 61C – Summer 2022

(Question 1 continued. . .)

Q1.2 (2 points) Convert 83 to the following bases as an unsigned number. Remove any leading zeros.
Binary Hex

0b101 0011 0x53

Solution:
The nearest power of 2 below 83 is 26 = 64. The remainder is 83−64 = 19. The nearest power
of 2 below 19 is 24 = 16. The remainder is 19−16 = 3. The nearest power of 2 below 3 is 21 = 2.
The remainder is 3− 2 = 1 = 20. In total, we have 26+24+21+20 = 64+16+2+1 = 83.
Converting this to unsigned binary gives us 0b101 0011.
In hexadecimal, we can zero-pad to 8 bits (1 hex digit = 4 bits, so we need the bit length of the
number to be a multiple of 4), which gives us 0b0101 0011. In hex, this is 0x53.

Q1.3 (3 points) Which of the following representations have more than one representation of 0? Select
all that apply.

(A) Two’s complement

(B) Sign-magnitude

(C) An IEEE-754 standard double-precision float

(D) Bias notation

(E) None of the above

Solution:
Two’s complement has one representation of zero. Intuitively, if you try to get a representation
of "negative zero", flipping all the bits of 0b0000...0000 gives you 0b1111...1111, and
adding one gives you 0b0000...0000 again.
Sign-magnitude has two representations of zero: 0b0...0000 (positive zero), and 0b1...0000
(negative zero).
Floating point representation has two representations of zero: set all exponent and mantissa
bits to zero. Then you can set the sign bit to either 0 or 1, and both result in 0.
Bias notation is unsigned representation with an offset. Unsigned representation has only one
representation of 0, so regardless of bias offset, there cannot be a second representation of 0.

Midterm (Question 1 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 22 CS 61C – Summer 2022

(Question 1 continued. . .)

Q1.4 (3 points) Which program resolves pseudoinstructions?

(A) Assembler

(B) Interpreter

(C) Linker

(D) Loader

(E) None of the above

Solution: Pseudoinstructions are resolved by the assembler in the process of converting
instructions into machine code (raw bits).

Q1.5 (3 points) Which program can output pseudoinstructions?

(A) Assembler

(B) Compiler

(C) Linker

(D) Preprocessor

(E) None of the above

Solution: Pseudoinstructions are part of assembly code. The compiler outputs assembly code.

Q1.6 (3 points) Which program initializes registers to their default value?

(A) Assembler

(B) Compiler

(C) Interpreter

(D) Linker

(E) None of the above

Solution: None of these choices actually start and run the program, so they don’t initialize
registers.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 22 CS 61C – Summer 2022

Q2 Trie, Trie Again (25 points)
In this problem, we will be implementing a trie. A trie is a data structure that stores strings in a
tree-like structure, with each character in the string corresponding to a node. If two strings start with
the same characters, the nodes for those characters will be shared between the two strings.
For each character in the string, our trie will create an AlphaTrieNode struct with two fields:

• A boolean last that indicates whether or not the character is the last character in a string. In the
diagram, nodes with last set to true are shaded.

• An array next of 26 AlphaTrieNode pointers. Each element in the next array corresponds to a
letter a-z. Each array element is either a pointer to the node corresponding to that letter, or NULL
if there is no node for that letter.

C

A

R

This trie on the left stores one word “car”.
The last field is false in the C and A nodes, and true in the
R node.
In the C node, next[0] should hold the address of the A node,
and next[1], next[2], ..., next[25] should all be NULL.

C

A

R L

L

O

C

We want to insert “calloc” into the trie. Note that “car” and
“calloc” both start with “ca—”, so we don’t create new nodes for
those two characters. However, “—lloc” is different from “—r”,
so our trie creates new nodes for those four characters.
In the A node, next[11] (for L) and next[17] (for R) contain
pointers, and all other pointers in the next array are NULL.

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 22 CS 61C – Summer 2022

(Question 2 continued. . .)

S

U

S

C

A

R L

L

O

C

We want to insert “sus” in the trie. “sus” starts with a different
character than the words so far, so we create new nodes for “s”,
“u”, and “s”, starting from the root node. Note that the second “s”
corresponding to the last character of “sus” is shaded (last set
to true).

S

U

S

C

E

L

L

A

R L

L

O

C

We want to insert “cell” in the trie. “cell” starts with “c”, but does
not start with “ca—”. We create new nodes for “—ell” and set
last in the second “l” to be true.
Note that the “-ll-” in “calloc” and the “-ll” in “cell” are not shared,
because the 2nd character of each word is different.

S

U

S

C

E

L

L

A

R L

L

O

C

We want to insert “call” to our trie. “call” starts with the same
letters as “calloc”, so we don’t need to add any nodes. However,
even though the nodes are already there, there is nothing to
indicate “call” is a word in the trie. We change this by updating
the last field of the second “l” in “calloc” to be true. This
indicates that “l” is now the end of a word.

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 22 CS 61C – Summer 2022

(Question 2 continued. . .)

For tries of AlphaTrieNodes, assume that:
1. Only lowercase letters (a-z) are supported. The ASCII values for these characters are [97,122],

inclusive.
2. If multiple instances of the same string are inserted, it should not affect the trie.
3. The string argument word is a well-formatted string composed of only lowercase letters a-z.
4. The node argument is the root node of a properly initialized trie.

typedef struct AlphaTrieNode {
bool last;
struct AlphaTrieNode* next[26];

} AlphaTrieNode;

int main() {
AlphaTrieNode* root = ... // instantiation of root (code not shown)

// should insert "crewmate" into the trie
insert(root, "crewmate");

// should return false since "imposter" has not been added to the trie
contains(root, "imposter");

// should return true since "crewmate" is in the trie
contains(root, "crewmate");

return 0;
}

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 22 CS 61C – Summer 2022

(Question 2 continued. . .)

Implement the contains and insert functions below.

Q2.1 (5 points) contains takes in a trie root node (node), and a pointer to a string (word). It should
return true if word is in the trie, and false otherwise.

1 bool contains(AlphaTrieNode* node, char* word) {

2 for (int i = 0; i < strlen(word); i++) {

3 int char_to_ascii = (int) word[i] - 97;

4 if (node->next[char_to_ascii] == NULL) {

5 return false;

6 }

7 node = node->next[char_to_ascii];

8 }

9 return node->last;

10 }

Q2.2 (8 points) insert takes in a trie root node (node), and a pointer to a string (word). It should insert
the word into the trie.

1 void insert(AlphaTrieNode* node, char* word) {

2 for (int i = 0; i < strlen(word); i++) {

3 int char_to_ascii = (int) word[i] - 97;

4 if (node->next[char_to_ascii] == NULL) {

5 node->next[char_to_ascii] = calloc(1, sizeof(AlphaTrieNode));

6 }

7 node = node->next[char_to_ascii];

8 }

9 node->last = true;

10 }

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 22 CS 61C – Summer 2022

(Question 2 continued. . .)

Consider an alternate trie implementation that supports all 256 ASCII characters instead of just 26
lowercase characters. We define a new struct, ASCIITrieNode, as follows:

typedef struct ASCIITrieNode {
bool last;
struct ASCIITrieNode* next[256];

} ASCIITrieNode;

We would like to write a function that converts a trie of AlphaTrieNodes to a trie of
ASCIITrieNodes. The function should also free all AlphaTrieNodes in the process. You may assume
that all AlphaTrieNodes are properly initialized.
Below, we have 3 implementations of this conversion function. For each implementation, determine
whether or not it is a valid implementation. If the implementation is not valid, please provide a brief
explanation (10 words or fewer).

Q2.3 (4 points)

ASCIITrieNode* convert(AlphaTrieNode* node) {
if (node == NULL) {

return NULL;
}
ASCIITrieNode* new_node = malloc(sizeof(ASCIITrieNode));
for (int i = 0; i < 26; i++) {

new_node->next[i + 97] = convert(node->next[i]);
}
new_node->last = node->last;
free(node);
return new_node;

}

(A) Valid (B) Invalid

Solution: This implementation doesn’t work because malloc allocates memory for the
ASCIITrieNode, but does not initialize that memory. In the for loop, we only fill in 26
pointers in the next array of 256 pointers. The rest of the pointers are uninitialized (garbage),
but they should be NULL since there are no nodes for the corresponding characters yet.

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 22 CS 61C – Summer 2022

(Question 2 continued. . .)

Q2.4 (4 points)

ASCIITrieNode* convert(AlphaTrieNode* node) {
if (node == NULL) {

return NULL;
}
ASCIITrieNode* new_node = calloc(1, sizeof(ASCIITrieNode));
for (int i = 0; i < 26; i++) {

new_node->next[i + 97] = convert(node->next[i]);
}
new_node->last = node->last;
free(node);
return new_node;

}

(A) Valid (B) Invalid

Solution: This implementation fixes the problem in the previous subpart by using calloc.
Now, the pointers in the next array that aren’t set by the for loop are initialized to NULL by
calloc.

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 10 of 22 CS 61C – Summer 2022

(Question 2 continued. . .)

Q2.5 (4 points)

ASCIITrieNode* convert(AlphaTrieNode* node) {
if (node == NULL) {

return NULL;
}
ASCIITrieNode* new_node = realloc(node, sizeof(ASCIITrieNode));
for (int i = 0; i < 256; i++) {

new_node->next[i] = NULL;
}
for (int j = 0; j < 26; j++) {

new_node->next[j + 97] = convert(node->next[j]);
}
return new_node;

}

(A) Valid (B) Invalid

Solution: This implementation is invalid in two different ways, depending on the behavior
of realloc.
Suppose realloc does not change the pointer to node. In other words, new_node holds the
same address as node). This means that the next array of pointers stays in the same place in
memory, but grows in length. In this case, the first for loop sets all the elements in the next
array to NULL. This means that when the second loop tries to read from the same next array,
it doesn’t read the pointers in the original node.
Suppose realloc does change the pointer in the process of reallocation. In other words, the
memory at node is freed, a new, larger block of memory is allocated, and a pointer to this new
memory is placed in new_node. In this case, we encounter the same problem as the malloc
case, where not all the pointers in this new block of memory have been allocated.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 11 of 22 CS 61C – Summer 2022

Q3 Can You Fix My Float? (20 points)
Consider a 16-bit fixed point system with 1 sign bit, 5 integer bits, and 10 fraction bits. The five integer
bits work just like a 5 bit unsigned integer. The 10 fraction bits continue where the integer bits left off,
representing 2−1, 2−2, . . ., 2−10. For example, the bit representation 0b0 01101 1010000000
represents (23 + 22 + 20) + (2−1 + 2−3) = 13.625.
In this question, we will compare this fixed-point system to a 16-bit floating point system that follows
all conventions of IEEE-754 floating point numbers (including denorms, NaNs, etc.), with 5 bits of
exponent and an exponent bias of -15.

Q3.1 (3 points) Write −22.375 in hex using the 16-bit floating point system described above.

Solution:
0xCD98

The floating point system in this question has 16 bits total, including 1 sign bit and 5 exponent
bits. That leaves 10 bits for the mantissa.
First, write 22.375 in binary: 0b1 0110.011
Then, move the binary point to create a number of the form 0b1.MM MMMM MMMM × 2E . This
gives us 0b1.01 1001 1000 × 24.
The mantissa bits can be read directly from this form: 0b01 1001 1000. Remember to drop
the implicit 1 to the left of the binary point.
The exponent is−4, which we can convert to bias notation by subtracting the bias: 4−(−15) =
19. In unsigned 5-bit binary, this is 0b10011.
The sign bit is 0b1, since the number is negative.
In total, we have 0b1 10011 01 1001 1000, which is 0xCD98 in hex.

Q3.2 (3 points) Write −22.375 in hex using the 16-bit fixed point system described above.

Solution: 0xD980
The sign bit is 0b1, since the number is negative.
To get the integer bits, we can convert 22 to unsigned binary, which gives us 0b10110.
To get the fractional bits, we can convert 0.375 to unsigned binary, which gives us 0b0.01
1000 0000. The fractional bits of this number are 0b01 1000 0000.
In total, we have 0b1 10110 01 1000 0000, which is 0xD980.

Midterm (Question 3 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 12 of 22 CS 61C – Summer 2022

(Question 3 continued. . .)

Q3.3 (3 points) Howmany numbers in the range [16, 64) (including 16, excluding 64) can be represented
by the floating point system described above?

Solution: One way to solve this question is to consider the step size, or distance between
representable numbers, in this range.
Consider the number 16, which can be represented as 0b1.00 0000 0000 ×24. The next-
largest number is 0b1.00 0000 0001 ×24. The distance between these two numbers is
0b0.00 0000 0001 ×24 = 0b0.00 0001 = 2−6.
This pattern of representable numbers being 2−6 apart continues all the way to 0b1.11 1111
1111 ×24 = 0b1 1111.1111 1111 = 25 − 2−6, which is just under 32.
In total, in the range [16, 32), we have a range of 16 with representable numbers spaced 2−6

apart. That’s 16/2−6 = 24/2−6 = 210 numbers that can be represented.
At this point, you can follow the same process to find the step size in the range [32, 64). One
shortcut is to note that step size in floating-point always increases by a factor of 2 (intuitively,
you’re losing one mantissa bit of precision as you reach higher numbers, so you end up
skipping every other number that would have been representable). The range [32, 64) is twice
as large as [16, 32), but the distance between representable numbers is also twice as large, so
we end up getting another 210 representable numbers in this range.
In total, we have 210 + 210 = 211 representable numbers in the range [16, 64).

Q3.4 (3 points) Howmany numbers in the range [16, 64) (including 16, excluding 64) can be represented
by the fixed point system described above?

Solution: 16 in the fixed point system is 0b10000.0000000000. The largest representable
number in the fixed point system is 0b11111.1111111111, which is 25 − 2−10, which is just
under 32.
In between these two numbers, we can choose every bit except the most-significant integer
bit to be 0 or 1. That gives us 4 integer bits and 10 fractional bits that could all be 0 or 1. Each
bit pattern represents a different number, so we have 214 representable numbers in total.
Another way to compute this is to note that we have a range of 16, and the step size in this
system is fixed to be 2−10 (changing the least-significant fractional bit causes the number to
increase by 2−10). This gives us 16/2−10 = 214 representable numbers in total.

Midterm (Question 3 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 13 of 22 CS 61C – Summer 2022

(Question 3 continued. . .)

Q3.5 (4 points) What is the smallest positive number representable by the above fixed point system but
not the above floating point system?
Express your answer as a sum or difference of powers of two (e.g. 24 − 22 + 2−1).

Solution: 2 + 2−10

As we saw in the previous part, the fixed-point system can represent all numbers from 0 to
25 − 2−10, with representable numbers spaced 2−10 apart.
One way to solve this is to note that the step size in floating point numbers (distance between
representable numbers) increases as the numbers increase as well. This means that we’re
looking for the first point where the floating point numbers start skipping by more than 2−10

at a time.
Given a floating point number of the form 0b1.MM MMMM MMMM ×2E , the step size is 2−10

when E is 0. When E increases to 1, the numbers become of the form 0b1.MM MMMM MMMM
×21 = 0b1M.M MMMM MMMM. At this point, consecutive numbers are 2−9 apart, so there will be
numbers that fixed-point can represent but floating-point cannot. The smallest such number
following this pattern is 0b10.0 0000 0000 = 2. This is representable by floating-point (e.g.
0b1.00 0000 0000 ×21. However, the next number in the fixed-point system, 2 + 2−10, is
not representable by floating point. The next number representable by floating point is 2+2−9

(since the step size has increased).

Q3.6 (4 points) What is the largest positive number representable by both systems described above?
Express your answer as a sum or difference of powers of two (e.g. 24 − 22 + 2−1).

Solution: 25 − 2−6

We know the largest number representable by the fixed-point system is 25 − 2−10. We also
know that the step size for the fixed-point system has a step size of 2−10.
From Q3.3, we know that around 25, the step size of the floating-point number is 2−6.
The floating-point number has a larger step size (larger gaps between numbers), so the largest
number representable by both systems is going to be limited by floating-point. (In other words,
in this area, the fixed-point system can represent some numbers that floating point can’t. All
floating point numbers in this area can also be represented in fixed-point, though.)
The largest floating-point number under 25 − 2−10 is 25 − 2−6, which is the largest number
representable by both systems.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 14 of 22 CS 61C – Summer 2022

This page intentionally left (mostly) blank.
Please do not tear off any pages from the exam.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 15 of 22 CS 61C – Summer 2022

Q4 Even Stevens (25 points)
You are given a list of numbers to add up by your math professor. However, your professor doesn’t like
odd numbers, so they ask that you only add up the even ones.
The function add_even_numbers is defined as follows:

• Inputs:
– a0: the address of the start of an array of 32-bit integers
– a1: the number of integers in the array

• Output:
– a0: the sum of all even numbers in the array

Example: Suppose input a0 points to [4, 5, 6, 7], and input a1 holds 4. Then output a0 holds 10
(4 + 6).

Midterm (Question 4 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 16 of 22 CS 61C – Summer 2022

(Question 4 continued. . .)

Q4.1 (15 points) Fill in the blanks in the RISC-V code below. You may not need all the blanks. Each line
should contain exactly one instruction or pseudo-instruction.

add_even_numbers:
addi t0, x0, 0 # set t0 to be the running sum

loop:
beq a1 x0 end
lw t1 0(a0) # set t1 to be the number in the array
andi t2 t1 1
bne t2 x0 pass
add t0 t0 t1

pass:
addi a0 a0 4
addi a1 a1 -1
j loop

end:
mv a0, t0
jr ra

Alternate Solution:
add_even_numbers:

addi t0, x0, 0 # set t0 to be the running sum
loop:

beq a1, x0, end
lw t1 0(a0) # set t1 to be the number in the array
srli t2, t1, 1
slli t2, t2, 1
bne t1, t2, pass
add t0, t0, t2

pass:
addi a1, a1, -1
addi a0, a0, 4
j loop

end:
mv a0, t0
jr ra

Midterm (Question 4 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 17 of 22 CS 61C – Summer 2022

(Question 4 continued. . .)

Q4.2 (5 points) Translate the j loop instruction under the skip label to hexadecimal. Assume that
every line in the above code is filled with exactly one instruction (or pseudo-instruction that
expands to one instruction).

Solution: 0xFDDFF06F

Optionally, for partial credit, write the offset in bytes as a decimal number in the box below.

Solution: -36
The line of code labeled loop is 9 instructions before the j loop instruction.

Q4.3 (5 points) Suddenly, your professor starts hating prime numbers, so now they only want you to
sum up the non-prime numbers.
Assume you are given a function is_prime that follows calling convention. What combination of
modifications to the add_even_numbers function is needed in order to sum up all the non-prime
numbers in the array? Select all that apply.

(A) Use another register to track the number of times is_prime is called

(B) Replace the code used to check if the number is even with a call to is_prime

(C) Decrement the stack pointer by some amount at the start of the function, and increment
the stack pointer by the same amount at the end of the function

(D) Save some values in a registers instead of t registers

(E) Save some values in s registers instead of t registers

(F) Save used a registers onto the stack at the beginning of the function

(G) Save used s registers onto the stack at the beginning of the function

(H) Save used t registers onto the stack at the beginning of the function

(I) Save another register (besides the a, s, or t registers) onto the stack at the beginning of
the function

(J) Restore at least one register from the stack at the end of the function

(K) None of the above

Solution: (A): Calling convention doesn’t need you to keep track of how many times a function is
called. The functionality of this program also doesn’t require you to keep track of how many times
the is_prime function is called.

Midterm (Question 4 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 18 of 22 CS 61C – Summer 2022

(Question 4 continued. . .)

(B): This is unrelated to calling convention, btu we do need to change the even number check to a
prime number check.
For the rest of the answer choices, there are two approaches we can take to follow calling convention.
One approach is to save all volatile registers (t and a registers) on the stack before the is_prime
function call, then restore the values back into those registers after the function returns. However,
this question doesn’t have any answer choices corresponding to this approach, so we need to take
the other approach.
The second approach is to use s registers, which don’t get changed by the is_prime function call,
instead of t registers, which might get changed by the is_prime function call. We can’t use a
registers instead of t registers because a registers could get modified by the function call too. This
is why option (E) is true and option (D) is false.
To use s registers, which our own add_even_numbers function is not allowed to modify, we need
to save the values in the s on the stack at the beginning of the function, then restore them at the
end of the function. This is why option (G) is true, options (F) and (H) are false, and option (J) is
true.
Finally, because we call a function is_prime within our function add_even_numbers, the return
address in rawill get modified. This means that at the end of add_even_numbers, we won’t know
where add_even_numbers should return to, because ra was overwritten to hold the place where
is_prime should return to. To solve this, we save the value of ra on the stack at the beginning of
the function, and restore its value at the end of the function. This is why option (I) is true.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 19 of 22 CS 61C – Summer 2022

Q5 TF? (10 points)
Simplify the Boolean logic for the following circuits. Your answer may only use the following
characters:

Character Description
A, B, C, D Inputs
* AND
+ OR
^ XOR
~ NOT
() Parentheses
0, 1 Constants

Example: the following circuit, which has Boolean logic A * A, can be simplified to out0 = A.

Q5.1 (2 points)

Solution: A * (~A + B) (direct translation of circuit)
A * ~A + A * B (distributive)
0 + A * B (inverse)
A * B (simplify)

Midterm (Question 5 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 20 of 22 CS 61C – Summer 2022

(Question 5 continued. . .)

Q5.2 (4 points)

Solution: (A + B) + ((~A * ~B) * ~C) (direct translation of circuit)
(A + B) + (~(A + B) * ~C) (De Morgan’s)
((A + B) + ~(A + B)) * ((A + B) + ~C) (distributive)
1 * (A + B + ~C) (inverse)
A + B + ~C (identity)

Q5.3 (4 points)

Solution: ~(~(A + D) * ~(C + ~B)) + B (direct translation of circuit)
(A + D) + (C + ~B) + B (De Morgan’s)
A + D + C + (B + ~B) (associative)
1 (inverse)

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 21 of 22 CS 61C – Summer 2022

Nothing on this page will be graded.

Is there anything you want us to know?

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 22 of 22 CS 61C – Summer 2022

