
CS 61C
Summer 2023

Charles, Jero, Rosalie
Midterm

Solutions last updated: Saturday, March 2, 2024

Print your name: ,

(last) (first)

Print your student ID:

You have 110 minutes. There are 7 questions of varying credit (100 points total).

Question: 1 2 3 4 5 6 7 Total

Points: 15 24 15 25 12 8 1 100

For questions with circular bubbles, you may select only one choice.

Unselected option (completely unfilled)

Only one selected option (completely filled)

For questions with square checkboxes, you may select one or more choices.

You can select

multiple squares

(completely filled)

Anything you write that you cross out will not be graded. Anything you write outside the answer boxes

will not be graded. If you write multiple answers or your answer is ambiguous, we will grade the worst

interpretation. For coding questions, you may write at most one statement and you may not use more

blanks than provided.

If an answer requires hex input, make sure you only use capitalized letters! For example, 0xDEADBEEF
instead of 0xdeadbeef. Please include hex (0x) or binary (0b) prefixes in your answers unless otherwise

specified. For all other bases, do not add any prefixes or suffixes.

Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I am aware

of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will be

reported to the Center for Student Conduct and may further result in, at minimum, negative points on

the exam.

Sign your name:

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 18

Q1 Potpourri (15 points)

Q1.1 (1 point) An n-bit number in bias notation and an n-bit two’s complement number always repre-

sent the same range of numbers.

True False

Solution: Suppose the bias is 0, then the range of bias notation is the same as the range of

unsigned.

Q1.2 (1 point) An n-bit two’s complement number can represent exactly twice the number of unique

values as an n-bit unsigned number.

True False

Solution: Two’s complement represents the same number of unique values as unsigned.

Q1.3 (1 point) For any number representation system, you must have at least 2n+ 1 bits to represent

the value 22n.

True False

Solution: Using bias notation, you can represent this number with 1 bit and a bias of 22n.

Q1.4 (1.5 points) Convert 0xA7 to decimal, assuming the data was stored as a two’s complement one-

byte integer.

Solution: −89

Grading: 0.5 points for the correct sign, 1 point for the correct magnitude (final answer was

either 89 or 167). -167 was not awarded partial credit since it is the result of two errors.

Q1.5 (1 point) The output of the compiler never contains pseudoinstructions.

True False

Q1.6 (1 point) The loader produces an executable.

True False

Midterm (Question 1 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 18 CS 61C – Summer 2023

(Question 1 continued. . .)

For Q1.7 and Q1.8, consider the following code snippet and assume that ints are 4 bytes.

int x = 257;
int y = strlen((char *) &x);

Q1.7 (1.5 points) In a little-endian system, what will y contain?

Solution: 2

x contains the four bytes 0x00 00 01 01. Thus on a little-endian machine, the bytes will be

stored with the nonzero bytes at lower addresses. When strlen interprets this as a string,
it will count length until the first null byte - in this case, it will count both 0x01 bytes and
report a length of 2.

Grading: All-or-nothing, except partial credit was given for interpreting it as a big-endian

system.

Q1.8 (1.5 points) In a big-endian system, what will y contain?

Solution: 0

See Q1.7 for the representation of x. On a big-endian machine, the bytes are stored with the

zero bytes at lower addresses. Thus when strlen is called on x, it will immediately see a null

byte and report a length of 0.

Grading: All-or-nothing, except partial credit was given for interpreting it as a little-endian

system.

Q1.9 (2 points) Write a Boolean expression that simplifies the Boolean expression below. You may use

at most 3 Boolean operations. ∼ (NOT), | (OR), & (AND) each count as one operation. We will

assume standard C operator precedence, so use parentheses when uncertain.

~(A|~C)|((~A&B)|B)

Solution: (~A&C)|B

~(A|~C)|((~A&B)|B) = (~A&~~C)|((~A & B)|B) De Morgan’s Law (OR)

= (~A&C)|((~A & B)|B) Idempotence (NOT)

= (~A&C)|B Absorption (AND)

Grading: No partial credit was awarded for an expression that is not equivalent to the original

expression. If the answer used more than 3 operators, the score was calculated as
4

num_ops+1 · 2.

Midterm (Question 1 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 18 CS 61C – Summer 2023

(Question 1 continued. . .)

Q1.10 (2 points) Translate the following RISC-V instruction to its hexadecimal counterpart.

slli a0 t2 4

Solution: 0x00439513
Grading: Partial credit was awarded for having the correct funct7/immediate, rs1, funct3,

rd, and opcode. funct7 and immediate are combined because it may be possible to have the

correct funct7 or immediate without demonstrating understanding of what this question was

designed to test.

Q1.11 (1.5 points) Represent 1.5 × 2−511
in hex using a binary floating point representation, which

follows IEEE-754 standard conventions, but has 10 exponent bits (and a standard bias of -511) and

21 mantissa bits.

Solution: 0x00180000
Looking at the number, it is equal to 1.12×2−511

. Since we can only represent exponents from

−510 to 511with a normal floating point number, this means our number must be represented

as a denormalized number, with a fixed exponent of 2−510
. Rewriting our number to use this

new exponent gives 0.112 × 2−510
. Thus the floating point representation is:

sign exponent mantissa

0 0000000000 11000000000000000000000

0000 0000 0001 1000 0000 0000 0000 0000

0x0 0 1 8 0 0 0 0

Grading: Partial credit was awarded for having the correct sign bit, having the correct

exponent bits, and having the correct mantissa.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 18 CS 61C – Summer 2023

Q2 #include “library.c” (24 points)

1 #define MAX_BORROWS 25
2
3 typedef struct {
4 char* book_name;
5 bool borrowed;
6 } Book;
7
8 typedef struct {
9 char* user_id;
10 Book* borrowed_books[MAX_BORROWS];
11 } User;
12
13 typedef struct {
14 User* users;
15 int users_len;
16 Book* books;
17 int books_len;
18 } Library;

The city of Eddy B.C wants to build a new library! The init_users function receives the following

input:

– Library* lib: A pointer to an uninitialized Library struct. You may assume that memory has

already been correctly allocated on the heap for the Library struct.

– char** user_ids: An array of well-formatted strings of nonzero length except the last element.

The last element is NULL. You may assume that all strings are allocated on the stack.

The function should make sure the following properties are held:

– users_len should be set to the number of strings in user_ids.

– Each User in users should be initialized as follows:

– The user_id of the ith User in users should be set to the ith string in user_ids.

– borrowed_books should be an array of NULLs to indicate that no Book has been borrowed.

– Every User and its contents must persist through function calls.

Useful C function prototypes:

void* malloc(size_t size);
void free(void *ptr);
void* calloc(size_t num_elements, size_t size);
void* realloc(void *ptr, size_t size);

size_t strlen(char* s);
char* strcpy(char* dest, char* src);

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 18 CS 61C – Summer 2023

(Question 2 continued. . .)

// memset sets the first num bytes of the block of memory pointed to by ptr
// to the specified value (interpreted as an unsigned char).
void* memset(void* ptr, int value, size_t num);

(15 points) Fill in init_users so that it matches the described behavior. Assume that all necessary C

libraries are included.

1 void init_users(Library* lib, char** user_ids) {
2 int i = 0;

3 while (
Q2.1

) {

4 lib
Q2.2

=
Q2.3

;

5 User* cur_user =
Q2.4

;

6 cur_user
Q2.5

=
Q2.6

;

7 strcpy(cur_user
Q2.7

,
Q2.8

);

8 memset(cur_user
Q2.9

,
Q2.10

,

MAX_BORROWS *
Q2.11

);

9 i++;
10 }

11 lib
Q2.12

= i - 1;

12 }

Solution:

1 void init_users(Library* lib, char** user_ids) {
2 int i = 0;
3 while (user_ids[i] != NULL) {
4 lib->users = realloc(lib->users, sizeof(User) * (i + 1));
5 User* cur_user = &lib->users[i];
6 cur_user->user_id = malloc((strlen(user_ids[i]) + 1) * sizeof(char));
7 strcpy(cur_user->user_id, user_ids[i]);
8 memset(cur_user->borrowed_books, 0,

MAX_BORROWS * sizeof(Book *));

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 18 CS 61C – Summer 2023

(Question 2 continued. . .)

9 i++;
10 }
11 lib->users_len = i - 1;
12 }

Line 11 should have been i, not i - 1. This was given as a clarification during the exam, and no

grading adjustment has been made.

It was ambiguous whether or not that memory was allocated for the Library struct pointer’s
members, such as users. Our solution relies on users being a pointer returned by malloc. As a
result, we’ve awarded full credit for Q2.2, Q2.3, and Q2.4 to everyone.

The remove_users function takes in one argument:

– Library* lib: A pointer to a Library struct where the contents have been allocated on the

heap.

The remove_users function should free every User and any additional memory that might have been

allocated for the User.

1 void remove_users(Library* lib) {
2 for (int i = 0; i < lib->users_len; i++) {
3 free(lib->users[i]);
4 }
5 }

Q2.13 (3 points) Is the remove_users function implemented correctly? If “Yes”, no justification is

required. If “No”, please explain in two sentences or fewer.

Yes No

Solution: There are multiple solutions that were accepted. One of the possible answers

is pointing out that lib->users is a User *, and lib->users[i] cannot be free’d since

it was not returned by malloc. The correct way of freeing this memory would be

free(lib->users).

For each of the following symbols, choose which section of memory it would live in.

Q2.14 (1 point) MAX_BORROWS

Stack Heap Data/Static Code

Solution: #define is a preprocessor directive, therefore it is replaced at compile time and

part of the code itself.

Midterm (Question 2 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 18 CS 61C – Summer 2023

(Question 2 continued. . .)

Q2.15 (1 point) init_users

Stack Heap Data/Static Code

Solution: init_users is a function, which is part of the code segment.

Q2.16 (1 point) lib, the parameter for init_users

Stack Heap Data/Static Code

Solution: C parameters are stored on the stack.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 18 CS 61C – Summer 2023

Q3 0x5f3759df (15 points)
Thanton remembered from class that right-shifting a binary number is the same as dividing it by two

(rounding down). They did get a little too eager, though, and have tried applying the concept to

arbitrary numbers including floating point numbers! They wrote a function, mystery, to logically right
shift the binary representation of the input value by 1 and return the result as a floating point value.

For this question, assume that we’re working with standard IEEE-754 single-precision floating point

numbers.

For Q3.1 to Q3.4, what would each of the following function calls return?

Q3.1 (2 points) mystery(0)

Solution: +0

The binary representation of 0 is 0b00000000000000000000000000000000. Right-shifting
this doesn’t change it, so mystery will return (positive) zero as well.

Grading: All-or-nothing. Due to the ambiguity of our clarification, we gave almost full credit

for "(+/-) 0", though it is technically incorrect since there are two 0’s in IEEE-754.

Q3.2 (2 points) mystery(-0)

Solution: 2

Negative zero is just like zero, but has its sign bit set:

0b1 00000000 00000000000000000000000

After shifting (logical shift means no sign-extension!), this gives:

0b0 10000000 00000000000000000000000

Splitting this up, this gives us a positive normal number with an exponent of 128 pre-bias (1

post-bias) and 0 mantissa.

1.02 × 21 = 2

Grading: All-or-nothing.

Q3.3 (2 points) mystery(∞)

Solution: 1.5

Positive infinity has representation

0b0 11111111 00000000000000000000000

and thus is

0b0 01111111 10000000000000000000000

after the shift. This is a positive number with an exponent of 127 pre-bias (0 post-bias).

1.12 × 20 = 1.5

Grading: All-or-nothing.

Midterm (Question 3 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 18 CS 61C – Summer 2023

(Question 3 continued. . .)

Q3.4 (2 points) mystery(−∞)

Solution: NaN

Negative infinity has representation like positive infinity, but negative:

0b1 11111111 000000000000000000000000

After the shift, this is

0b0 11111111 100000000000000000000000

With a maximal exponent and a nonzero mantissa, this value is a NaN.

Grading: All-or-nothing.

For Q3.5 and Q3.6, “normal numbers” are numbers that are not denormalized, zero, NaN, or infinity.

Q3.5 (3.5 points) Suppose we run mystery on every possible NaN value. What are all of the possible

return values? Select all that apply.

Denormalized numbers

Zero

NaN

Infinity

Normal numbers

None of the above

Solution:
Any NaN value has all of the exponent bits set, and the sign bit may or may not be set. If

the sign bit is set, then after the shift we will obtain 0b0 11111111 1xxx.. where the

xxx... represents any arbitrary bits. This is a NaN value. If the sign bit is not set, we get 0b0
01111111 1xxx... which is normal.

Grading: Each checkbox was graded as it’s own true/false question, and selecting "None of

the above" was treated as not selecting any of the other choices.

Q3.6 (3.5 points) Suppose we run mystery on every possible denormalized value. What are all of the

possible return values? Select all that apply.

Denormalized numbers

Zero

NaN

Infinity

Normal numbers

None of the above

Solution:
A denormalized value has all of its exponent bits not set (0), and again the sign bit may or

may not be set. If the sign bit is set, we will get 0b0 10000000 0xxx... where the xxx...
represents any arbitrary bits. This is a normal number. If the sign bit is not set, we get 0b0
00000000 0xxx.... If the arbitrary bits are nonzero, this is another denormalized number;

if they are zero, then every bit is zero and we have zero.

Grading: Each checkbox was graded as it’s own true/false question, and selecting "None of

the above" was treated as not selecting any of the other choices.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 10 of 18 CS 61C – Summer 2023

Q4 RISC-V, RISC-XVI, RISC-VIII (25 points)
A wondrous sequence of positive integers is defined as follows: If n is even, then the next number is

n
2 .

Otherwise, the next number is 3n+ 1.

Q4.1 (2 points) We want to create a pseudoinstruction to check whether a number is odd or not. This

instruction, written is_odd rd rs1, will put the value 1 in rd if the value in rs1 is odd, and the

value 0 otherwise. What is the RISC-V instruction that is_odd rd rs1 would translate to? You

may only use one instruction, and you may not use any pseudoinstructions.

Note: Your solution may include rd and rs1.

Solution: andi rd rs1 1, or equivalent. The key idea is that the last bit of a number is

sufficient to tell whether or not it is odd — an odd number in binary ends in 1, whereas an

even one will end in 0. Therefore, this mask, which zeroes out all but the LSB, will perform

our desired operation.

Using is_odd, write a function (that follows calling convention) to compute the next wondrous

number and return it in a0, given the current wondrous number as input in a0. Your code may not use

mul or any t registers.

1 next_number:

2
Q4.2

3
Q4.3

4 is_odd
Q4.4

5 beq s0 x0 else

6
Q4.5

7
Q4.6

8
Q4.7

9 j exit
10 else:

11
Q4.8

12 exit:

13
Q4.9

14
Q4.10

Midterm (Question 4 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 11 of 18 CS 61C – Summer 2023

(Question 4 continued. . .)

15 jr ra

Solution:

There are many possible solutions, one such solution is included below:

1 next_number:
2 addi sp sp -4
3 sw s0 0(sp)
4 is_odd s0 a0
5 beq s0 x0 else
6 slli s0 a0 1
7 add so s0 a0
8 addi a0 s0 1
9 j exit
10 else:
11 srai a0 a0 1
12 exit:
13 lw s0 0(sp)
14 addi sp sp 4
15 jr ra

Grading: Credit was given for all equivalent answers, with points deducted for using t registers,
mul, or breaking calling convention.

Using next_number, write a function (that follows calling convention) to count the number of steps

until a wondrous sequence reaches the number 1 and return the number of steps in a0, given a starting

number as input in a0.

You may assume that a0 will be a positive integer. You may not use any additional s registers beyond
those provided in the skeleton code.

1 num_steps:
Prologue
Omitted

2 addi s0 x0
Q4.11

3 loop_start:

4 addi t0 x0
Q4.12

5
Q4.13

Midterm (Question 4 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 12 of 18 CS 61C – Summer 2023

(Question 4 continued. . .)

6
Q4.14

7
Q4.15

8 j loop_start

9 loop_end:

10
Q4.16

Epilogue
Omitted

11 jr ra

Solution:

1 num_steps:
Prologue
Omitted

2 addi s0 x0 0
3 loop_start:
4 addi t0 x0 1
5 beq a0 t0 loop_end
6 jal ra next_number
7 addi s0 s0 1
8 j loop_start
9 loop_end:
10 add a0 s0 x0

Epilogue
Omitted

11 jr ra

Grading: Credit was given for all equivalent answers, with points deducted for using s registers
or breaking calling convention.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 13 of 18 CS 61C – Summer 2023

Q5 Fully Secure Machine (12 points)
A garage door opens if it ever sees the password 011 in a transmission. More formally, this FSM takes

a bitstring consisting of 0’s and 1’s as its input, and continually outputs 0’s until it sees the substring
011, after which it outputs 1’s continuously. Example executions of this FSM are below:

Input: 010101001100001010101
Output: 000000000111111111111

Input: 000000000001000000010
Output: 000000000000000000000

2

3

4

5

6

1

8

7

Start

For each of the numbered arrows, mark the correct FSM state transition.

Q5.1 (1.5 points) Arrow 1

0/0 0/1 1/0 1/1

Q5.2 (1.5 points) Arrow 2

0/0 0/1 1/0 1/1

Q5.3 (1.5 points) Arrow 3

0/0 0/1 1/0 1/1

Q5.4 (1.5 points) Arrow 4

0/0 0/1 1/0 1/1

Q5.5 (1.5 points) Arrow 5

0/0 0/1 1/0 1/1

Q5.6 (1.5 points) Arrow 6

0/0 0/1 1/0 1/1

Q5.7 (1.5 points) Arrow 7

0/0 0/1 1/0 1/1

Q5.8 (1.5 points) Arrow 8

0/0 0/1 1/0 1/1

Midterm (Question 5 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 14 of 18 CS 61C – Summer 2023

(Question 5 continued. . .)

Solution: Note. For the last two questions, their answers can be swapped. Credit is given for both

arrangements.

Grading: All-or-nothing, except for the last two questions, where partial was awarded for having

one correct answer between the two.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 15 of 18 CS 61C – Summer 2023

Q6 SDS (8 points)
Consider the following circuit diagram and component delays:

tAND = 20ps

tNOT = 5ps

tOR = 20ps

tXOR = 25ps

tmultiplier = 50ps

tsubtract = 35ps

tclk-q = 5ps

tsetup = 2ps

Q6.1 (2 points) What is the smallest combinational delay of all paths in this circuit, in picoseconds?

Solution: 25ps

The shortest CL path is between the right register and the top left register, consisting of a

NOT gate and an OR gate, for a total delay of 25ps.

Grading: All-or-nothing.

Q6.2 (2 points) What is the minimum allowable clock period for this circuit to function properly, in

picoseconds?

Solution: 117ps

The longest path between any two registers is between the top left register and the register,

consisting of a multiplier, a NOT gate, a subtractor, and an AND gate, for a total of 110ps.

Additionally, we need to account for clk-to-q and setup, which gives us 117ps.

Grading: All-or-nothing.

Q6.3 (2 points) What is the maximum hold time the registers can have so that there are no hold time

violations in the circuit above?

Solution: 30ps

The shortest CL path is 25ps (see Q6.1), and the maximum hold time is the shortest CL path +

clk-to-q, which gives us 30ps.

Grading: All-or-nothing, except full credit was given for Q6.1 + 5 to avoid double jeopardy

Midterm (Question 6 continues. . .)

This content is protected and may not be shared, uploaded, or distributed.

Page 16 of 18 CS 61C – Summer 2023

(Question 6 continued. . .)

Q6.4 (2 points) Suppose this circuit only deals with two’s complement integers. Currently, the subtractor

component has a delay of 35ps. What is the maximum delay an adder component can have such

that we could replace the subtractor component with adders, NOT gates, and constants to achieve

the same delay as the subtractor while maintaining the same behavior? You may assume that

constants have no delay.

As a reminder, the subtract component does the following operation:

output = top input - bottom input

Solution: 35ps

Since we’re dealing with two’s complement numbers, subtracting by x is equivalent to adding

∼ x+ 1, where ∼ x flips all of the bits of x. As a result, we can chain together a NOT gate, an

adder with a constant 1, and another adder (to add the output of the previous adder and the

top input of the subtractor) to achieve the same behavior.

The intent of the question is for students to realize that the NOT gate and the first adder

does not actually add any additional delay, since the multiplier/NOT gate combo of the top

input of the subtractor takes more time than the NOT gate/adder combo for the bottom input.

Therefore, the adder can have a delay of 35ps (the same as the existing subtractor) for the

circuit to maintain the same timing behavior.

Grading: All-or-nothing, except 15ps was also awarded full credit due to ambiguity raised

within this question (assuming that the subtractor should be treated as a black box, and

replaced with a black box consisting of two adders, a NOT gate, and a constant).

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 17 of 18 CS 61C – Summer 2023

Q7 The Finish Line (1 points)
Everyone will receive credit for this question, even if you leave it blank.

Q7.1 (1 point) Where are the RISC and IEEE-754 plaques in Soda Hall?

1st Floor 2nd Floor 3rd Floor 4th Floor

5th Floor 6th Floor 7th Floor

Q7.2 (0 points) Is there anything you want us to know?

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 18 of 18 CS 61C – Summer 2023

