
Weaver CS 61C Final
Spring 2020 Machine Structures

Note (August 10, 2022): These are extremely rough drafts of rewritten solutions. They definitely
contain errors and unfinished sections, but might have some useful parts for studying.

Print your name: ,
(first) (last)

Print your student ID:

Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I
am aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic
misconduct will be reported to the Center for Student Conduct and may further result in, at
minimum, negative points on the exam and a corresponding notch on Nick’s Stanley Fubar
demolition tool.

Sign your name:

You have 170? minutes. There are 8 questions of varying credit, for a total of 121 points.
For questions with circular bubbles, you may select only one choice.

Unselected option

Only one selected option

For questions with square checkboxes, you may select one or more choices.

You can select

multiple squares

Anything you write that you cross out will not be graded. Anything you write outside the answer
boxes will not be graded.

If an answer requires hex input, make sure you only use capitalized letters! For example, 0xDEAD
BEEF instead of 0xdeadbeef. You will be graded incorrectly otherwise! Please always add the hex
(0x) and binary (0b) prefix to your answers or you will receive 0 points. For all other bases, do not
add the suffix or prefixes.

Do not add units unless the problem explicitly tells you to!

Final Page 1/31 CS 61C - Spring 2020

Question 1 Bitz are Bitz! (8 points)
Let’s consider the hexadecimal value 0xFA000003. How is this data interpreted, if we treat this
number as...

an array A of unsigned, 8-bit numbers? Please write each number in decimal, assume the
machine is little endian. If the value is unknown, write GARBAGE (in all caps).

Q1.1 (0.5 point) A[0]

Solution: 3

If we assume that the system is little-endian, then 0x03 is stored at the lowest address
in memory, then 0x00 at the next-highest address, then 0x00 at the next-highest
address, then 0xFA at the highest address.

A[0] is the first element of the array, which is stored at the lowest address.

Q1.2 (0.5 point) A[1]

Solution: 0

See previous solution; this is the byte at the second-lowest memory address.

Q1.3 (0.5 point) A[2]

Solution: 0

See previous solution; this is the byte at the third-lowest memory address.

Q1.4 (0.5 point) A[3]

Solution: 250 (which is 0xFA in decimal)

See previous solution; this is the byte at the highest memory address. 0xFA = 15 ×
161 + 10× 160 = 240 + 10 = 250.

Q1.5 (2 points) a IEEE-754-style floating point number, but which uses only 8 bits for the
exponent with a bias of 64 (where we subtract the bias)? Write out as binary scientific
notation, so e.g. an answer that looks like this: −1.0100100 · 215.

Solution: −1.000000000000000000000011 · 258

Q1.6 (2 points) a RISC-V instruction? If there’s an immediate, write it in decimal. If it is an
invalid instruction, write INVALID INSTRUCTION (in all caps).

Solution: lb x0, -96(x0)

Final (Question 1 continues. . .) Page 2/31 CS 61C - Spring 2020

(Question 1 continued. . .)

Q1.7 (2 points) a (uint32 t *) variable c in big-endian format, and we call printf("%i",
(int) ((uint8 t *) &c) [0])? If the value is unknown, write GARBAGE (in all caps).

Solution: &c is the address of the bits 0xFA000003. It could also be interpreted as a
pointer to the bits 0xFA000003.

(uint8 t *) &c) says that we should treat this pointer as a pointer to an array of
uint8 t numbers (each number takes up 1 byte).

(uint8 t *) &c) [0] dereferences the pointer to the array, and accesses the first
element of the array. The first element of the array is stored at the lowest memory
address. Since this question assumes big-endian format, the most-significant byte 0xFA
will be stored at the lowest memory address.

(int) ((uint8 t *) &c) [0]) casts the uint8 t number 0xFA to an integer, then
the printf call prints out the integer. SOLUTION-TODO: Why does this cast not
change the value of the number?

250 (which is 0xFA in decimal).

Final Page 3/31 CS 61C - Spring 2020

Question 2 Cache me Outsize (24 points)
Given the following looping workload over an array where N is a large power of 2. The cache
starts out empty, and the process() function doesn’t introduce any significant cache pressure
(so you can discount any hits or misses in the process() function).

uint32_t arr[N];

for (int j=0; j < 30; j++) {

for (int i=0; i < N; i += 1) {

process(arr[i]);

}

}

Express the following answers as a function of N. If you have a fraction, please fully
simplify it. If you believe that an answer is of the form 42 * N, DO NOT include the multiply.
You should format that answer like 42N. Failure to do so or not capitalizing N will result in no
points! If you have a fraction answer of the form 1 / 42 * N, format it like (1/42)N. Note if
it is NOT a fraction, you MUST not include the parentheses.

Suppose we have a LRU fully associative cache of size 4N B and a block size of 4B.

Q2.1 (2 points) Number of hits

Solution: 29N

Each block can hold 4 bytes. The cache is 4N bytes in total, so there are N blocks in
the cache.

Note that each element of arr is a uint32 t, which is 32 bits = 4 bytes. This means
that each block holds one element of the array.

Consider the first iteration of the outer loop, when j=0. The inner loop accesses
arr[i] for all i between i=0 and i=N-1. Each access is a miss, since this is the first
time we’re seeing each element of arr. There are N misses in the first iteration of the
outer loop.

At this point, the entire array is in the cache. Note that the cache holds N blocks =
N elements of the array, which is exactly enough space for the entire array. Also, the
cache is fully-associative, so we can put each element of the array anywhere we want
in the cache.

For the rest of the iterations of the outer loop, the inner loop will cause N hits. There
are 29 more iterations of the outer loop, for 29N hits.

Q2.2 (2 points) Number of misses

Solution: N

See previous solution.

Final (Question 2 continues. . .) Page 4/31 CS 61C - Spring 2020

(Question 2 continued. . .)

Q2.3 (2 points) What type of locality is this cache taking advantage of (select all that apply)

Quasi-balistic

Temporal

Spatial

None

Solution: Quasi-balistic is made-up (not a real cache term).

We’re taking advantage of temporal locality by repeatedly accessing elements of arr
around the same time.

We’re not taking advantage of spatial locality, because each block holds only one
element of the array, so we never used the fact that the elements of the array are
stored side-by-side in memory. (One way to think about this is to note that if every
element of the array were stored in a completely random part of memory, we would
still have the same number of hits/misses.)

Q2.4 (2 points) Does your answer change if the cache is 2 way set-associative? (Note: The
cache size is still the same)

Yes No

Solution: On the first iteration of the outer loop, there are still N misses. After the
first iteration, the entire array still ends up in the cache. One way to see this is to
note that the elements in the array are all at consecutive memory addresses, so the
first half of the array fills up one block of each set, then the second half of the array
fills up the second block of each set. Since the entire array ends up in the cache, the
rest of the iterations of the outer loop still cause 29N hits.

We’re still only exploiting temporal locality, not spatial locality, because we didn’t
increase the block size (each block still only holds one element of the array).

Suppose we have a LRU fully associative cache of size 2N B and a block size of 4B.

Q2.5 (2 points) Number of hits

Solution: 0

Note that the size of the cache is now half as large, so we can only fit half of the array
in the cache. Consider the first iteration of the outer for loop. The first half of the
inner for loop will fill up the cache with the first half of the array, causing N/2 misses.
Then, the second half of the inner for loop will replace all the data in the cache with
the second half of the array, causing another N/2 misses.

At the end of the first iteration of the outer loop, we have the second half of the array
in the cache. In the second iteration of the outer loop, the first half of the inner for
loop will replace all the data in the cache with the first half of the array again. Then
the first half of the array gets replaced in the cache by the second half of the cache
again.

This pattern repeats through the entire code, so we get no hits. We access the array N

times per iteration of the outer loop, for 30N accesses in total. Every access is a miss.

Final (Question 2 continues. . .) Page 5/31 CS 61C - Spring 2020

(Question 2 continued. . .)

Q2.6 (2 points) Number of misses

Solution: 30N

See previous solution.

Q2.7 (2 points) What type of locality is this cache taking advantage of (select all that apply)

Quasi-balistic

Temporal

Spatial

None

Solution: We aren’t taking advantage of any sort of locality, since the cache is always
missing. (Adding the cache didn’t improve the performance of our code.)

Q2.8 (2 points) Does your answer change if the cache is 2 way set-associative? (Note: The
cache size is still the same)

Yes No

Solution: In a 2-way set associative cache, the cache will still alternate holding the
first half and the second half of the array. One way to see this is to consider each
iteration of the inner for loop. The first quarter of memory accesses will fill up one
block of each set, then the second quarter of memory accesses will fill up the second
block of each set, filling up the entire cache with the first half of the array in all. Then
the same pattern occurs with the third and fourth quarter of memory accesses.

Suppose we have a LRU fully associative cache of size 2N B and a block size of 8B.

Q2.9 (2 points) Number of hits

Solution: 15N

Since the entire array is 4N bytes, this cache fits half of the array. Also, note that each
block is 8 bytes, so each block fits 2 elements of the array.

Consider the first iteration of the outer for loop. Accessing arr[0] is a cache miss, but
it brings in a block with arr[0] and arr[1]. Then accessing arr[1] is a hit. Then
accessing arr[2] is a miss, bringing in arr[2] and arr[3]. Then accessing arr[3]

is a hit. This pattern continues through the entire inner loop, causing N/2 misses and
N/2 hits.

As in the previous part, the first half of the inner loop brings the first half of the array
into the cache. Then the second half of the inner loop replaces all the data in the
cache with the second half of the array. In the next iteration of the outer loop, the
first half of the inner loop replaces all the data in the cache with the first half of the
array again. Since the entire cache data is being swapped out on each iteration of the
outer for loop, there are no additional hits caused by the cache being filled up with
data between iterations of the outer loop.

In total, there are 30N array accesses. Half are misses, and half are hits.

Final (Question 2 continues. . .) Page 6/31 CS 61C - Spring 2020

(Question 2 continued. . .)

Q2.10 (2 points) Number of misses

Solution: 15N

See previous solution.

Q2.11 (2 points) What type of locality is this cache taking advantage of (select all that apply)

Quasi-balistic

Temporal

Spatial

None

Solution: We’re not taking advantage of temporal locality, because repeatedly access-
ing elements of the array in the short amount of time (i.e. across different iterations
of the outer loop) don’t improve our cache behavior. The cache may as well start cold
at the start of each outer loop iteration, and it wouldn’t change our hit rate.

We’re taking advantage of spatial locality, because each block brings in two adjacent
array elements. This gives us an additional cache hit when we access the second of
the two elements in the cache block.

Q2.12 (2 points) Does your answer change if the cache is 2 way set-associative? (Note: The
cache size is still the same)

Yes No

Solution: As in the previous solutions, the cache still gets filled with the first half or
second half of the array, even if the cache is 2-way set associative.

Final Page 7/31 CS 61C - Spring 2020

Question 3 Nick’s Parallelism Computer (uh huh) Setup (8 points)
Nick has several resources at his disposal. The first is a 12 core AMD Ryzen processor running
at over 3 GHz for MIMD computation, the second is a massive SIMD computational engine in
the form of a high-end graphics card with 10 teraflops of floating point computation (he got it
for compute. . . Uh hu.), and the final is a large map/reduce cluster on campus he has access
to. If a problem requires reading as many memory locations as compute operations, mark it as
”memory bound” because the speedups from parallelism are going to be minor because it will
be limited by the memory subsystem.

Please select a parallelism technique which would benefit the problem the most.

Q3.1 (2 points) 32b floating point matrix multiply of 100M entry matrices with a transposed
matrix

MIMD parallelism

SIMD parallelism

Map/reduce

Memory bound

None (sequential)

Solution: SIMD parallelism

Recall that to perform matrix multiplication, we need to take a row of the first matrix
and a column of the second matrix, and perform a dot product. The second matrix is
transposed, so fetching a column of the second matrix is equivalent to fetching a row
of the transposed second matrix.

Assuming that the matrices are stored in row-major order, we have two rows of values
being stored at adjacent addresses in memory. SIMD operations are most powerful
when we can load and store vectors of values from adjacent addresses in memory.

Then, we need to perform element-wise multiplication on these two rows of values to
perform the dot product. This is a single operation that we’re repeatedly computing
on multiple data, which is another indicator that SIMD parallelism is most useful here.

MIMD parallelism may also help here, but SIMD is more appropriate here because
the vast majority of computation is the same instruction (multiplication and some
addition).

Map/reduce processes inputs and outputs as key/value pairs, and it’s not immediately
obvious how you would design the task of matrix multiplication in the map/reduce
paradigm.

This task is not memory-bound because for two n× n matrices, we need to read 2n2

elements of the matrices. This is O(n2) number of reads. However, matrix multi-
plication requires O(n3) number of computations (for each of the n2 elements of the
result matrix, we need to perform a dot product that involves multiplying and adding
n elements). The number of computations outnumbers the number of memory reads.

Final (Question 3 continues. . .) Page 8/31 CS 61C - Spring 2020

(Question 3 continued. . .)

Q3.2 (2 points) Find all references to himself in a downloaded corpus of every Internet post
ever made (some 5 PB of data)

MIMD parallelism

SIMD parallelism

Map/reduce

Memory bound

None (sequential)

Solution: Counting the number of instances of a word in a large corpus of documents
is a classic problem that map/reduce is designed to solve. We can use the map function
to produce key-value pairs for each word mapping the word to the number 1. Then
we can use the reduce function to combine all key-value pairs with the same key (i.e.
all instances of the same word) and add all the corresponding values together (so that
the value corresponding to the count is the number of times the word appears).

MIMD parallelism is not the best solution here, because all the threads would even-
tually need to combine their results, creating a bottleneck.

SIMD parallelism is not the best solution here, because there isn’t a clear single in-
struction that we’re executing on multiple pieces of data.

This task is not memory-bound because there is more computation to be done (check-
ing for references for each document and combining counts) than memory accesses
(reading each document).

Q3.3 (2 points) Run a program he’s written that has 40 threads that cocmmunicate through
queues or channels

MIMD parallelism

SIMD parallelism

Map/reduce

Memory bound

None (sequential)

Solution: The main indicator that MIMD parallelism is the best choice here is the
fact that the program has 40 threads. Threads are an example of MIMD parallelism,
since each thread can work on different instructions and different parts of data.

Q3.4 (2 points) 32b floating point matrix addition of 100M entry matricees

MIMD parallelism

SIMD parallelism

Map/reduce

Memory bound

None (sequential)

Solution: This task is memory-bound, because to add two n × n matrices together,
we would need to make 2n2 memory accesses to read both matrices, but we would
only need to perform n2 additions.

Final Page 9/31 CS 61C - Spring 2020

Question 4 Virtual Reality! I mean Memory. . . (8 points)
Consider a system with 2 MiB of physical memory and 4 GiB of virtual memory. Page size
is 4KiB. Recall that the single level page table is stored in physical memory and consists of
PTE’s, or page table entries.

Q4.1 (3 points) If we choose to store seven information bits in each PTE, how big is the page
table in bytes?

Solution: 221

VPN contains log(2
32

212
) = 20 bits

PPN contains log(2
21

212
) = 9 bits

9 bit PPN + 7 info bits = 16 bits per PTE
24 bit PTE · 220 PTE’s = 224 bit page table, or 221 bytes

Q4.2 (3 points) The page table starts off empty, then we make the following accesses:
0x00111999, 0x00234567, 0x00555FFF. If the page table begins at address 0x20000000,
at what address can we find the PTE for the first access? (Your answer should be in hex)

Solution: 0x20000222. 0x00111999 has a VPN of 0x00111. Each PTE is 2 bytes,
so 0x00111 · 2 = 0x00222. 0x20000000 + 0x00222 = 0x20000222.

Q4.3 (2 points) We have a fully associative TLB that also started empty but now contains the
three entries from the accesses above. If we access 0x00556000 now, will we get a TLB
hit, page hit, or page fault?

TLB hit

Page hit

Page fault

None of the other answers

Solution: Page fault: 0x00556000 is a new page.

Final Page 10/31 CS 61C - Spring 2020

Question 5 Mover your A** (27 points)
The (not turing complete) programming language Mover is defined as follows:

The program stores an 2-D grid of 8-bit integers, initialized to 0, a memory pointer, which
starts at (x, y) = (0, 0), and a program flow, which starts at ”FORWARD”. The program
recognizes only the following 8 commands:

• > Moves the pointer one step right (+1 to x)

• < Moves the pointer one step left (−1 to x)

• ^ Moves the pointer one step up (+1 to y)

• v Moves the pointer one step down (−1 to y)

• + Increments the value at the pointer by 1

• - Decrements the value at the pointer by 1

•] If the pointer is currently pointing at a 0 and the current program flow is ”FORWARD”,
change the program flow to ”BACKWARD”. Otherwise do nothing.

• [If the pointer is currently pointing at a 0 and the current program flow is ”BACK-
WARD”, change the program flow to ”FORWARD”. Otherwise do nothing.

If the program flow is ”FORWARD”, then the next instruction to be executed is the one after
the current one; if the program flow is ”BACKWARD”, then the next instruction is the one
before the current instruction.

It is undefined behavior for the pointer to go outside the memory array’s bounds and likewise
the behavior for integer overflow and underflow are undefined. For the C version, the program
halts if it reaches the end of the program string in either direction.

The language ignores any other characters in the program, and terminates if the program
counter goes past the bounds of the program.

You want to write a C program that interprets this language: The inputs are a valid mover
program as a null terminated string, and memory grid, which points to a sequence of pointers,
each of which points to a buffer that is a column of the 2D grid.

void runMover(char* program, int8_t** array)

{

uint x = 0;

uint y = 0;

uint pc = 0;

uint dir = 1; /* forward = true */

uint len = strlen(program);

while(pc>=0 && pc<length)

{

switch(program[pc])

{

//Code for each Mover command

}

pc += dir ? 1: -1;

}

}

Final (Question 5 continues. . .) Page 11/31 CS 61C - Spring 2020

(Question 5 continued. . .)

For the following operators, write the C code for the following Mover commands.

Q5.1 (1 point)

Command: ^

Code:

case ’^’:

<YOUR CODE HERE>

break;

Solution: y += 1; (or equivalent)

Note that x and y are the memory pointer described in the question.

As stated in the question, ^ should add 1 to y.

Q5.2 (2 points)

Command: +
Code:

case ’+’:

<YOUR CODE HERE>

break;

Solution: memory grid[x][y] += 1; (or equivalent)

As stated in the question, + should increment the value at the pointer by 1.

As stated in the question memory grid points to a sequence of pointers, each of which
points to a buffer that is a column of the 2D grid. This means that we should first
pick a column of the 2D grid by indexing into the sequence of pointers and choosing
a pointer. The column is chosen by x. Then, we pick a row within that column by
indexing into the buffer. The row is chosen by y.

Q5.3 (2 points) Command:]
Code:

case ’]’:

<YOUR CODE HERE>

break;

Solution: if (!memory grid[x][y]) programflow = 0; (or equivalent)

As stated in the question,] should check if the pointer is currently pointing at 0. We
do this with if (!memory grid[x][y]).

Then if the condition is true, we set the program flow to backward with programflow

= 0. Note that if the pointer is currently pointing at 0, and the program flow is
backward, then the question says we should do nothing.

If the program flow is already backward, setting it to backward again doesn’t change
anything, so not checking for the program flow in the if condition is fine.

Final (Question 5 continues. . .) Page 12/31 CS 61C - Spring 2020

(Question 5 continued. . .)

You now want to create a circuit that runs Mover. In order to do that, you assign each Mover
command a unique 4-bit code (explanations of each command have been copied for reference):

• (0001) > Moves the pointer one step right (+1 to x)

• (1001) < Moves the pointer one step left (−1 to x)

• (0101) ^ Moves the pointer one step up (+1 to y)

• (1101) v Moves the pointer one step down (−1 to y)

• (0011) + Increments the value at the pointer by 1

• (1011) - Decrements the value at the pointer by 1

• (0111)] If the pointer is currently pointing at a 0 and the current program flow is ”FOR-
WARD”, change the program flow to ”BACKWARD”. Otherwise do nothing.

• (1111) [If the pointer is currently pointing at a 0 and the current program flow is ”BACK-
WARD”, change the program flow to ”FORWARD”. Otherwise do nothing.

You have finished the general structure of the circuit, and just need to finish writing the control
logic. The memories in question are asynchronous read but synchronous write (thus the CLK).
During startup the registers are set to 0. Note that the direction register now holds zero
(not one) when the program is going forward. We just run forever and it is simply undefined
behavior to either overflow or underflow the PC so we aren’t worrying about having to check
for any of that.

Single Cycle Mover

Let x3, x2, x1, x0 be the bits of an instruction with x0 being the least significant bit, and
let BrEq be the value of BrEq. Write the most simplified logical equations for each output of
Control Logic.

Please use C syntax when writing out your formulas.

Final (Question 5 continues. . .) Page 13/31 CS 61C - Spring 2020

(Question 5 continued. . .)

Q5.4 (2 points) YRW

Solution: ~x1 & x2 (or equivalent)

YRW is the write-enable bit for the register holding the value of Y.

We want to write to the Y register in the ^ and v instructions, which have opcodes
0101 and 1101. Thus we want YRW to be 1 when the opcode is either 0101 or 1101.
In all other instructions, we want YRW to be 0.

We can inspect the pattern of the opcodes to note that ^ and v have the only two
opcodes where the middle two bits are 10 (x1 is 0 and x2 is 1).

Q5.5 (2 points) XRW

Solution: ~(x1 | x2) (or equivalent)

XRW is the write-enable bit for the register holding the value of X.

We want to write to the X register in the > and < instructions, which have opcodes
0001 and 1001. Thus we want XRW to be 1 when the opcode is either 0001 or 1001.
In all other instructions, we want XRW to be 0.

We can inspect the pattern of the opcodes to note that > and < have the only two
opcodes where the middle two bits are 00 (x1 is 0 and x2 is 0).

This could be written as ~x1 & ~x2, but we can use DeMorgan’s law to simplify this
to ~(x1 | x2) which requires one fewer logic operator.

Final (Question 5 continues. . .) Page 14/31 CS 61C - Spring 2020

(Question 5 continued. . .)

Q5.6 (2 points) PFVal

Solution: ~x3 (or equivalent)

PFVal is the second input of a mux whose output is being sent to a one-bit register.
We see the memory pointer (X and Y) and the program counter registers already
labeled in the circuit, and the grid is stored in memory. The only remaining value
we haven’t seen in the circuit is the 1-bit program flow, so this 1-bit register must be
holding the program flow signal.

The mux before the program flow register is choosing between two signals. The top
wire is the output of the program flow register. If we send the output of the program
flow register back into the input of the program flow register, we’re leaving the program
flow unchanged. Then the bottom wire must be used to change the program flow.

The program flow is changed in the] and [instructions, which have opcodes 0111

and 1111.

In the] instruction (opcode 0111), we want to change the program flow to backward,
so we want the program flow register to hold value 1. For opcode 0111, we want PFVal
to be 1.

In the] instruction (opcode 1111), we want to change the program flow to forward, so
we want the program flow register to hold value 0. For opcode 1111, we want PFVal
to be 0.

For all other instructions, PFVal can be any garbage value, since we won’t be selecting
the bottom branch of the mux to change the program flow register.

By inspecting the two opcodes and the desired PFVal values, we notice that the left-
most bit of the opcode x3 is the opposite of the desired PFVal value.

Final (Question 5 continues. . .) Page 15/31 CS 61C - Spring 2020

(Question 5 continued. . .)

Q5.7 (2 points) PFSel

Solution: x1 & x2 & BrEq (or equivalent)

Continuing from the previous part, PFSel is being used to choose between the two
branches of the mux. The output of the mux is then sent to the program flow register.

When PFSel is 0, we choose the upper input of the mux, which is the output of the
program flow register. This will cause the program flow value to stay unchanged. Thus
we want PFSel to be 0 when the program flow value should not be changed.

When PFSel is 1, we choose the lower input of the mux, which is PFVal. From the
previous part, PFVal forces program flow to change from the [or] instructions. Thus
we want PFSel to be 1 when the instruction is [and or] instruction, and the pointer
is currently pointing at 0.

We can determine when the instruction is [or] by examining the opcodes and noting
that these are the only two instructions where the middle two bits (x1 and x2) are 11.

We can determine when the pointer is currently pointing at 0 by using the BrEq signal.
Note that the BrEq signal comes from a comparator that checks if Data Out (the value
in the grid that the pointer is pointing at) is equal to 0.

Thus for PFSel to be 1 (the program flow to change), we need the instruction to be [
or] (x1 & x2), and we need BrEq to be 1 (pointer is pointing at 0).

Q5.8 (2 points) MemRW

Solution: x1 & ~x2 (or equivalent)

MemRW is the write-enable bit for DMEM, which is where we’re storing the grid.

We want to write to the grid in the + and - instructions. For these two instructions,
we want MemRW to be 1. For all other instructions, we aren’t writing to the grid, so
we want MemRW to be 0.

Note that + and - have opcodes 0011 and 1011. We can inspect the pattern of the
opcodes to note that these are the only two opcodes where the middle two bits are 01
(x1 is 1 and x2 is 0).

Final (Question 5 continues. . .) Page 16/31 CS 61C - Spring 2020

(Question 5 continued. . .)

Q5.9 (2 points) MuxSel

Solution: x3

MuxSel is being used as input to two muxes. The top mux chooses between the
output of two adders, which are computing X+1 (top input of mux) and X-1 (bottom
input of mux). The bottom mux chooses between the output of two adders, which are
computing Y+1 (top input of mux) and Y-1 (bottom input of mux). Then the output
of the two muxes are being sent into the X and Y registers.

MuxSel should be 0 (top input of mux) when we want to compute X+1. This happens
in the > instruction (opcode 0001). MuxSel should also be 0 when we want to compute
Y+1. This happens in the ^ instruction (opcode 0101).

MuxSel should be 1 (bottom input of mux) when we want to compute X-1. This
happens in the > instruction (opcode 1001). MuxSel should also be 1 when we want
to compute Y-1. This happens in the v instruction (opcode 1101).

In all other instructions, we’re not updating X or Y, so MuxSel can be garbage (XRW
and YRW will ensure that the mux output/register input won’t be written to the X
and Y registers).

By inspecting the four relevant opcodes and the expected MuxSel value for each op-
code, we can notice that the left-most bit x3 corresponds exactly to the desired value
of MuxSel. For example, for opcode 0001, we want MuxSel to be 0, and the left-most
bit is 0. For opcode 1101, we want MuxSel to be 1, and the left-most bit is 1.

Final (Question 5 continues. . .) Page 17/31 CS 61C - Spring 2020

(Question 5 continued. . .)

After finishing your circuit, you find that it’s a bit slow. To speed things up, you decide to
pipeline the above circuit by dividing the circuit into IF, ID/EX, and MEM/WB stages.

Pipelined Mover

Q5.10 (3 points) What hazards can occur? Assume that the single cycle datapath worked as
intended (Select all that apply)

Control Hazard

Structural Hazard

Data Hazard

None of the Other Choices

Solution: Control Hazard: Yes. If our instruction is [or], then we need to wait
until after MEM to decide whether to reverse flow. If we pipeline, we would need to
stall for [or] instructions.
Structural Hazard: No. In the current system, register reads and writes happen during
the same cycle.
Data Hazard: No. Since our writeback doesn’t affect X or Y, we can never have a
data dependency.
None of the Other Choices: No. While data and structural hazards cannot occur,
control hazards can.

Final (Question 5 continues. . .) Page 18/31 CS 61C - Spring 2020

(Question 5 continued. . .)

Q5.11 (3 points) Please leave your answer in ns and do not add the units.

If all registers (including pipeline registers) have 2ns setup, 0ns hold, and 2ns clk-to-q
time, the memories take 4ns to do a read and have a 2ns setup time for writes, and the
sequential logic takes 0ns (yes, that’s a ridiculous number, we chose it to make the path
simple), what is the minimum viable clock period for the resulting datapath?

Solution: 8. 2ns (clk-to-q time) + 4ns (IMEM read) + 2ns (setup time) = 8ns

We’re looking for the longest path through any two clocked elements in the circuit,
where we assume that we’ve added registers where the circuit is divided into pipeline
stages. Note that when writing to IMEM or DMEM, the input of IMEM or DMEM
counts as a clocked element (which is why there’s a 2ns setup time for writes). However,
when reading from IMEM or DMEM, the memory blocks act as combinatorial logic
blocks with a 4ns read delay.

Since all sequential logic takes 0 ns, the longest path must be reading from one of the
two memories, DMEM or IMEM. There’s no path that read from both IMEM and
DMEM in the same cycle, so our longest path is any path that reads from one of
IMEM or DMEM. This path has a 4ns combinatorial delay to read from memory.

In total, after a rising edge, we need to wait 2ns for values to appear at the register
outputs (clk-to-q time). Then we have to wait 4ns for the longest path (reading a
memory block) to execute. Then we have to hold the resulting signal at the register
input for 2ns before the next rising edge (setup time).

Of course, direction tracking can be also implemented as a finite state machine with two states
(1 = forward, 0 = backward) and 3 inputs: ”CF” which is 1 when the current instruction is
”[”, ”CB” which is 1 when the current instruction is ”]”, and ”Mem” which is 1 if the current
memory value is non-zero. For the four transitions on the below state transition diagram, write
the most simplified logical equations for each edge.

Final (Question 5 continues. . .) Page 19/31 CS 61C - Spring 2020

(Question 5 continued. . .)

Q5.12 (1 point) A

Solution: !(CF & !Mem) = !CF | Mem

While going backward, we could encounter four different things:

[instruction (CF) and the pointer is currently pointing at 0 (!Mem). Then we should
change program flow to forward.

[instruction (CF) and the pointer is currently not pointing at 0 (Mem). Then we should
keep program flow as backward.

] instruction (CB) and the pointer is currently pointing at 0 (!Mem). Then we should
keep program flow as backward.

] instruction (CB) and the pointer is currently not pointing at 0 (Mem). Then we should
keep program flow as backward.

In other words, the only case that doesn’t result in arrow A is the first case with CF

& !Mem.

Q5.13 (1 point) B

Solution: !(CB & !Mem) = (!CB | Mem)

Similar logic to the previous subpart. When moving forward, the only case that doesn’t
result in arrow B is the case with CB & !Mem (we would switch to moving backward
in this case).

Q5.14 (1 point) C

Solution: CB & !Mem

See solution for arrow B. The only case that results in switching directions from back-
ward to forward is the case with CB & !Mem.

Q5.15 (1 point) D

Solution: CF & !Mem

See solution for arrow A. The only case that results in switching directions from
forward to backward is the case with CF & !Mem.

Final Page 20/31 CS 61C - Spring 2020

Question 6 I Forget Where This Data Goes (14 points)
For each question, select the option which best describes what an operation would evaluate to.
If the operation would lead to something which is not a valid address, select ”Not an Address”.
Consider this snipper of a C program.

void foo() {

int64t w = 4;

int64t* u = malloc(100 * sizeof(w));

int64t** v = &u;

...

}

Q6.1 (2 points) What does sizeof(*u) evaluate to on a 32-bit system?

Solution: 8

When we dereference u, we are now asking for the size of an int64 t. This is 8 bytes
as that is the size of this type (64 bits / 8 bits = 8 bytes).

Q6.2 (2 points) What does sizeof(u) evaluate to on a 32-bit system?

Solution: 4

This is because the type of u is a pointer to an int64 t meaning we are asking for the
size of the pointer.

Q6.3 (2 points) What type of value does v evaluate to?

Stack Address

Heap Address

Static Address

Not an Address

Solution: Note that unlike some other exams, we are not asking where the variable
v is stored. Instead, we’re asking where in memory the value in v is pointing at.

v contains the value &u. This is the address of a local variable, and we know that local
variables are stored on the stack.

Q6.4 (2 points) What type of value does *v evaluate to?

Stack Address

Heap Address

Static Address

Not an Address

Solution: *v evaluates to *(&u), which evaluates to u. The value of u is an address
on the heap, since u holds an address returned by malloc.

Again, note that unlike some other exam questions, we are not asking where the
variable u is stored (that would be the stack). We’re asking where the pointer u is
pointing at (the heap).

Final (Question 6 continues. . .) Page 21/31 CS 61C - Spring 2020

(Question 6 continued. . .)

Q6.5 (2 points) What type of value does (u + 1) evaluate to?

Stack Address

Heap Address

Static Address

Not an Address

Solution: From the previous subpart, we know that u holds an address on the heap.
If we add 1 to this address (actually, we would add 1 * sizeof(int64 t)), we still
get an address on the heap.

Q6.6 (2 points) What type of value does *(u + 1) evaluate to?

Stack Address

Heap Address

Static Address

Not an Address

Solution: From the previous subpart, u+1 is an address on the heap. If we dereference
this address *(u+1), we get some data on the heap. This is space that was allocated
by malloc and never initialized yet, so the data on the heap is garbage and probably
not an address.

Q6.7 (2 points) What type of value does &w evaluate to?

Stack Address

Heap Address

Static Address

Not an Address

Solution: &w is the address of the local variable w, and we know that local variables
are stored on the stack. Thus the value &w is a stack address.

Final Page 22/31 CS 61C - Spring 2020

Question 7 Bloomin Onion (20 points)
A very clever data structure for efficiently and probabilistically storing a set is called a ”bloom
filter”. It has two functions: check and insert. The basic idea for checking is that you hash
what you are looking for multiple times. Each hash tells you a particular bit you need to set
or check. So for checking you see if the bit is set. You repeat this for multiple iteration, with
the hash including the iteration count (so each hash is different). If not all bits are set then
the element does not exist in the bloom filter. If all bits are set then the element PROBABLY
exists in the bloom filter. Similarly, for setting an element as present in a bloom filter you just
set all those bits to 1.

We want to make a bloom filter design that is flexible and portable. So we design the following
structure.

struct BloomFilter {

uint32t size; /* Size is # of bits, NOT BYTES, in the bloom filter */

uint16t itercount;

uint64t (*)(void *data, uint16t iter) hash;

uint8t *data;

};

Q7.1 (2 points) On a 32b architecture that requires word alignment for 32b integers and point-
ers, what is sizeof(struct BloomFilter)?

Solution: 16

uint32 t size takes up 32 bits = 4 bytes. Call these bytes 0-3 of the struct.

uint16 t itercount takes up 16 bits = 2 bytes. Call these bytes 4-5 of the struct.

The next field in the struct (hash) is a function pointer, and the question says we need
word alignment for pointers. Word alignment means that the address of the struct
field must be a multiple of the word size, which is 4 bytes on a 32-bit system.

Because we need the next field to be word-aligned, we add 2 bytes of padding. Call
these bytes 6-7 of the struct. Now the next field will start at byte 8, which is a multiple
of 4.

hash is a function pointer, which takes up 4 bytes. Call these bytes 8-11 of the struct.

uint8 t *data is a pointer, which takes up 4 bytes. Call these bytes 12-15 of the
struct.

In total, we have bytes 0-15 of the struct, which is 16 bytes. Alternatively: 4 + 2 +
2 + 4 + 4 = 16.

Final (Question 7 continues. . .) Page 23/31 CS 61C - Spring 2020

(Question 7 continued. . .)

And now we have the insert function... For this we need to set the appropriate bit for each
iteration.

void insert(struct BloomFilter *b, void *element){

uint64t bitnum; /* which bit we need to set */

int i;

for(i = 0; i < (CODE INPUT 1); ++i){

bitnum = (CODE INPUT 2);

b->data[bitnum >> 3] = (CODE INPUT 3);

}

}

Q7.2 (1 point) (CODE INPUT 1):

Solution: b->itercount

The question says that for inserting, you need to repeat the steps for a certain number
of iterations. From the code, we can infer that the itercount field of the struct is the
number of iterations we need to repeat the steps.

In the insert function, we’re given a pointer to a struct struct BloomFilter *b.
We need to dereference this struct pointer to get the actual struct, and then access a
field within a struct. Recall that the -> (arrow) operator dereferences a struct pointer
and accesses a struct field. The . (dot) operator would not work here, because it
accesses a struct field given an actual struct, not a struct pointer.

Final (Question 7 continues. . .) Page 24/31 CS 61C - Spring 2020

(Question 7 continued. . .)

Q7.3 (3 points) (CODE INPUT 2)

Solution: b->hash(element, (uint16 t) i) % b->size

According to the question, we need to hash the element we’re trying to insert. The
question also says that the hash needs to include the iteration count.

The struct has a hash field, which we can infer is a pointer to the hash function we
need to compute. To access the function pointer, we need to use the arrow syntax (as
described in the previous part), i.e. b->hash.

Recall that in C, when you have an expression for a function pointer, you can directly
call the function pointer. For example, if x is a function pointer, then x(3) will call
the corresponding function with argument 3.

Recall that in C, the syntax for function pointers lists the return value(s) and then
the argument(s). In this case, we have uint64 t (*)(void *data, uint16 t iter)

hash which says that the function takes in arguments (void *data, uint16 t iter)

and returns a uint64 t.

In this case, we want to call the hash function with the element (the argument to
insert) and the iteration count (we found this in the previous subpart).

The call to the hash looks like this: b->hash(element, i). Casting i from an integer
to a uint16 t is good practice (since the argument to the hash function is a uint16 t)
but probably not strictly necessary.

Finally, the question says that “each hash tells you a particular bit you need to set or
check,” but there is no guarantee that the hash output is lower than the number of
bits in the Bloom filter. If the hash output is greater than the number of bits in the
Bloom filter, then bitnum will be too large, and the next line will index out-of-bounds.
Therefore, we should use the mod operator on the hash output to ensure that the value
in bitnum is not greater than the size of the Bloom filter (b->size).

Final (Question 7 continues. . .) Page 25/31 CS 61C - Spring 2020

(Question 7 continued. . .)

Q7.4 (3 points) (CODE INPUT 3)

Solution: b->data[bitnum >> 3] | (1 << (bitnum & 0x7)) (or equivalent)

The question says that once the hash tells us a particular bit we need to set, we’ll need
to set that bit to 1 as part of the insertion process.

However, note that C indexes memory in bytes, not bits, so we will need to perform
some bit manipulation to set only one bit of memory.

The left side of this expression is b->data[bitnum >> 3]. Note that bitnum >> 3

divides bitnum by 8. bitnum/8 tells us which byte of the data array contains the bit
we want to set. We divide by 8 because each byte is 8 bits, and we want to convert
from the index measured in bits to the index measured in bytes. Then, we get this
byte of the data array by indexing into the data array, which is an array of bytes
(each uint8 t is 1 byte).

Once we figure out which byte contains the bit we’re trying to set, we can determine
exactly which bit to set by checking the bottom 3 bits of bitnum. Intuitively: bitnum
>> 3 takes the top bits (all but the bottom 3 bits), which are used to determine the
byte containing the bit we want to change. Then, the bottom 3 bits are used to
determine the offset within this byte (i.e. where the bit we want to change is located
within the byte).

We can extract the bottom 3 bits of bitnum by using bitwise AND. Note that ANDing
anything with 0 gives 0: 0 AND 0 = 0 and 0 AND 1 = 0. We can use this property to
set all but the bottom 3 bits to 0.

Also, note that ANDing a bit with 1 gives the same bit back: 1 AND 1 = 1 and 0 AND

1 = 0. We can use this property to preserve the bottom 3 bits.

bitnum & 0b111 performs a bitwise AND that zeroes out all but the bottom 3 bits of
the number, and leaves the bottom 3 bits of the number unchanged. This is the offset
within the byte, identifying the bit inside the byte that we want to change. In other
words, if we call bitnum & 0b111 = i, then we want to change the ith bit inside the
byte.

We want to set one bit in this byte, leaving the other 7 bits unchanged. We can do this
by exploiting the properties of bitwise OR. Note that ORing anything with 1 gives 1:
1 OR 1 = 1 and 0 OR 1 = 1. We can use this property to set a bit to be 1.

Also, note that ORing a bit with 0 gives the same bit back: 0 OR 0 = 0 and 1 OR 0

= 1. We can use this property to leave the other bits of the byte unchanged.

In order to change the ith bit, we need to perform a bitwise OR where the ith bit
is OR’d with 1 (which sets the bit to 1), and all other bits are OR’d with 0 (which
leaves those bits unchanged). To do this, we need to build a number where the ith
bit is 1, and all other bits are 0. We can do build this number by taking the bit 1 and
left-shifting it by i places to put the 1 in the ith bit (the left-shift fills in zeros to the
right of the 1).

Once we have this number 1 << i, we take the byte and XOR the byte with 1 << i

to set only the ith bit to 1.

In summary:

bitnum is the index of the bit we want to set to 1, measured in bits.

bitnum >> 3 identifies which byte of the data array contains the bit we want to set.

b->data[bitnum >> 3] contains 8 bits from the data array. We want to set one of
these bits to 1.

bitnum & 0x7 uses bitwise AND to extract the bottom 3 bits of bitnum, which iden-
tifies which bit within the selected byte we want to set.

1 << (bitnum & 0x7) creates a number with the (bitnum & 0x7)’th bit set to 1.

b->data[bitnum >> 3] | (1 << (bitnum & 0x7)) takes the relevant byte from the
data array and uses bitwise OR to only set the appropriate bit to 1, leaving the other
7 bits of the byte unchanged.

Final (Question 7 continues. . .) Page 26/31 CS 61C - Spring 2020

(Question 7 continued. . .)

We also have the following function to allocate a new bloom filter

struct BloomFilter *alloc(

uint64t (*)(void *data, uint16t iter) hash,

uint32t size,

uint16t itercount){

struct BloomFilter *ret = malloc(64);

/* Yes, this is way too big, but we don’t want to give you the answer

to the previous question! */

ret->size = size;

ret->data = calloc(size >> 3, 1);

ret->hash = hash;

ret->itercount = itercount;

}

Complete the RISC-V translation necessary to allocate this: We will put ret in s0.

alloc: # Prolog

(CODE INPUT 1)

sw ra 0(sp)

sw s0 4(sp)

sw a0 8(sp)

sw a1 12(sp)

sw a2 16(sp)

body

addi (CODE INPUT 2)

jal malloc

mv s0 a0 # put ret in s0

(CODE INPUT 3) # load size into t0

(CODE INPUT 4) # store it

(CODE INPUT 5) # div size by 8 with a shift

jal calloc

sw a0 12(s0) # store data

(CODE INPUT 6) # load hash to t0

(CODE INPUT 7) # store it: Use the right type!

(CODE INPUT 8) # load itercount to t0

(CODE INPUT 9) # store it: Use the right type!

mv a0 s0

epilog

lw ra 0(sp)

(CODE INPUT 10)

(CODE INPUT 11)

jr ra

Final (Question 7 continues. . .) Page 27/31 CS 61C - Spring 2020

(Question 7 continued. . .)

Q7.5 (1 point) (CODE INPUT 1)

Solution: addi sp, sp, -20

In the lines following this blank, we’re storing the values in 5 registers on the stack.
Each register contains 4 bytes, so we need to make 5 × 4 = 20 bytes of space on the
stack.

Q7.6 (1 point) (CODE INPUT 2)

Solution: a0, x0, 64

The line directly following this blank calls malloc, so we should pass an argument into
malloc first. In the provided C code, we’re calling malloc(64), so we should put the
number 64 in a0, the first argument register.

Q7.7 (1 point) (CODE INPUT 3)

Solution: lw t0, 12(sp)

size is the second argument to the function, passed to the function in a1. However,
according to calling convention, a1 is a non-preserved register, so the call to malloc
could have modified a1 (in other words, you must assume that a1 contains garbage
after the function call). Luckily, we saved the value of a1 on the stack in the prologue,
so we can load the value of a1 from memory and put it back into the t0 register (as
the comment says to do).

Q7.8 (1 point) (CODE INPUT 4)

Solution: sw t0, 0(s0)

We want to store the value of size into the struct that we just allocated memory for.
In the struct definition, size is the first field, so it’s stored at the start of the struct
(with offset of 0).

The address of the struct we allocated was in a0 after the call to malloc (since the
return value of functions goes in a0). Then on the line immediately after the function
call, we move the value to s0.

In summary, we take the value of size (in t0 from the previous blank), and store it to
the address in s0 (the address of the struct we allocated), with an offset of 0 (because
size is the first field of the struct).

Final (Question 7 continues. . .) Page 28/31 CS 61C - Spring 2020

(Question 7 continued. . .)

Q7.9 (1 point) (CODE INPUT 5)

Solution: srli a0, t0, 3

Recall that shifting a number right by 1 bit divides the number by two. To divide a
number by 8, we have to divide the number by two 3 times, which is equivalent to
shifting the number right by 3 bits. (The C code also shows that you have to shift
right by 3.)

Be careful to use srli (shift right logical immediate) and not srai (shift right arith-
metic immediate), because we want to fill in the 3 empty bits created by the shift with
zeros. We don’t want to sign-extend the number, since size is an unsigned number.

t0 still holds size, so we shift the value in t0 by 3.

Note that immediately after this line, we’re calling calloc, so we also need to set up
arguments to calloc. In particular, size >> 3, the value we just calculated, is the
first argument to calloc, so we should put this value in a0.

Q7.10 (1 point) (CODE INPUT 6)

Solution: lw t0, 8(sp)

hash was the first argument to the alloc function, so it was placed in a0 at the start
of the function. However, our code has overwritten the value in a0 a few times, so
hash is no longer in a0. However, in the prologue, we stored the value of a0 (hash)
on the stack, so we can load hash back from the stack and put the value in t0.

Q7.11 (1 point) (CODE INPUT 7)

Solution: sw t0, 8(s0)

We want to store hash in the struct in memory that we allocated. From blank 4, we
know that s0 holds the address of the struct in memory. (The call to calloc won’t
overwrite s0 because of calling convention.)

hash is the third field of this struct, located at bytes 8-12 of the struct (see the first
subpart of this question for why bytes 8-12). Thus we need to store at an offset of 8
bytes from the start of the struct.

hash is a pointer (4 bytes), so we need to use the store-word instruction.

Q7.12 (1 point) (CODE INPUT 8)

Solution: lw t0, 16(sp)

Similar logic to blanks 3 and 6. itercount is the third argument to the alloc function,
in a2 at the start of the function, and stored on the stack in the prologue.

Final (Question 7 continues. . .) Page 29/31 CS 61C - Spring 2020

(Question 7 continued. . .)

Q7.13 (1 point) (CODE INPUT 9)

Solution: sh t0, 4(s0)

Similar logic to blanks 4 and 7. itercount is the second field of this struct, located at
bytes 4-5 of the struct (see the first subpart of this question for why bytes 4-5). Thus
we need to store at an offset of 4 bytes from the start of the struct.

hash is a uint16 t (2 bytes), so we need to use the store half-word instruction.

Q7.14 (1 point) (CODE INPUT 10)

Solution: lw s0, 4(sp)

According to calling convention, the alloc function is allowed to modify all t and a

registers, but not allowed to modify any s registers.

Throughout the function, we changed the value in s0, so we need to save the value of
s0 at the start of the function and restore the original value of s0 before the function
returns.

Q7.15 (1 point) (CODE INPUT 11)

Solution: addi sp, sp, 20

In the first blank, we allocated 20 bytes of space on the stack. Before the function
returns, we need to free up this space since we’re done using that memory.

Final Page 30/31 CS 61C - Spring 2020

Question 8 CALL me maybe (12 points)
For the following two parts, please indicate if they always or never need to be relocated.

Q8.1 (2 points) PC-Relative Addressing

Never Relocate Always Relocate

Solution: TODO

Q8.2 (2 points) Static Data Reference

Never Relocate Always Relocate

Solution: TODO

Q8.3 (3 points) Select all the steps that are done during the Assembler phase of CALL

Producing machine language

Generating Assembly code

Semantic Analysis

Parsing the C code

Outputting executable code

Lexing the C code

Pseudo-instruction replacement

Solution: TODO

Q8.4 (3 points) Describe two benefits of using Dynamically Linked Libraries

Solution: There’s more than two right answers to this question, but the most common
ones we accepted were:

• Saving resources (such as disk space or memory) by sharing data (they do not
need the same extra data)

• Easier upgrading as we only need to replace the DLL file (we do not need to
recompile the code which used the DLL library)

• Multi-language programming: The DLL may be written in a different language
as what you are using.

• System independence/standardized interface: A DLL may offer a standard inter-
face for hardwared of a machine which allows for an abstraction from the main
program

Q8.5 (2 points) What are assembler directives (explain what they are used for, don’t just give
examples of them)?

Solution: They give directions to the assembler, but do not produce machine instruc-
tions.

Final Page 31/31 CS 61C - Spring 2020

