
Weaver CS 61C Midterm 1
Spring 2020 Machine Structures

Print your name: ,
(first) (last)

Print your student ID:

Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I
am aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic
misconduct will be reported to the Center for Student Conduct and may further result in, at
minimum, negative points on the exam and a corresponding notch on Nick’s Stanley Fubar
demolition tool.

Sign your name:

You have 110? minutes. There are 7 questions of varying credit, for a total of 68 points.
For questions with circular bubbles, you may select only one choice.

Unselected option

Only one selected option

For questions with square checkboxes, you may select one or more choices.

You can select

multiple squares

Anything you write that you cross out will not be graded. Anything you write outside the answer
boxes will not be graded.

Midterm 1 Page 1/18 CS 61C - Spring 2020

Question 1 String Cheese (8 points)
Mark the correct lines that will allow the program to execute as specified below: There may
be multiple correct answers.

Q1.1 (1 point) Correctly gets the number of bytes in a string, including the null-terminator
(Mark all that apply)

int get_strlen(char* str) {

;

}

return strlen(str);

return strlen(str) + 1;

return sizeof(str);

return sizeof(str) + 1;

return str.strlen() + 1;

None of the above

Solution:

Because strlen only returns the length of the string without the null-terminator, we
must add 1. sizeof won’t work in this case because it would return the number of
bytes that the char* takes, which does not tell us how many of bytes are in a string.
.strlen(), which would be an instance method, does not exist in C (since strings are
just a pointer to its first character).

Q1.2 (1 point) Gets the ith element of an array

int get_elem(int* arr) {

;

}

return arr[i];

return arr + i;

return *(arr + i);

return arr.get(i);

return arr.get(i);

return *arr + i;

None of the above

Solution: We can index into an array using either the index notation ([i]) or by
moving the pointer and dereferencing the pointer. Adding i to arr only moves the
pointer and does not dereference it, therefore it would return a pointer, not an int.
Arrays in C do not have a .get method (or any other methods). *arr + i would
dereference the array first, retrieving the first element, then add i to the first element
(see C order of operations).

Midterm 1 (Question 1 continues. . .) Page 2/18 CS 61C - Spring 2020

https://en.cppreference.com/w/c/language/operator_precedence

(Question 1 continued. . .)

Q1.3 (3 points) The following code is executed on a 32-bit little-endian system.

#include <stdio.h>

int main() {

int doThis = 0x6C697665;

char *dont = (char *)(&doThis);

printf("A: ");

for (int i = 0; i < 4; i++) {

printf("%c", dont[i]);

}

printf("\n");

}

What is printed when this program is run? If it crashes/segfaults, write n/a.

Solution: The program prints out A: evil.

The program doesn’t segfault because C treats data as bits to be interpreted with
regards to their type and trusts that the programmer’s type casts are correct. This
means that we can treat an int as a series of chars. Little-endian means the least
significant byte (0x65) is located at the lowest memory address, which is accessed first,
so the program prints evil, not live.

Midterm 1 (Question 1 continues. . .) Page 3/18 CS 61C - Spring 2020

(Question 1 continued. . .)

Q1.4 (3 points) Carefully read the following code.

0 #include <stdio.h>

1 #include <string.h>

2 int main() {

3 char *boo = \go cardinals!";

4 char *cheer = \go bears!!!!";

5 printf(\%s", cheer);

6 for (int i = 0; i < strlen(cheer); i++) {

7 boo[i] = cheer[i];

8 }

9 printf(\%s", boo);

10 }

Yes

Line # where the crash occurs:

0 1 2

3 4 5

6 7 8

9 10

Line # to change to solve the crash:

0 1 2

3 4 5

6 7 8

9 10

No
Write exactly what is printed to stdout

Solution: The program crashes because string literals ("abcd") are read only and
cannot be modified. On line 7, the program attempts to modify boo, which would
cause the program to crash. To prevent the crash, line 3 can be changed to char

boo[] = "go cardinals!";, which would use the string literal ("go cardinals!")
to initialize a char array, which is modifiable because it is located in the stack.

Editor’s note: When reformatting this exam, we’ve intentionally left the line number-
ing for this question to be 0-indexed since it was also 0-indexed in the original version
of this exam. The remainder of this exam will have line numbers that are 1-indexed,
and are not referenced in questions (only referenced in the solutions).

Midterm 1 Page 4/18 CS 61C - Spring 2020

Question 2 Number RIP (8 points)
Please complete each of the following parts. Write N/A if the conversion is not possible. You
may assume all binary numbers are 8 bits.

Convert -29 (a decimal number) to the following representations:

Q2.1 (1 point) Binary (two’s complement)

Solution: 0b11100011

We first find the binary representation of 29, which is 0b00011101. We then flip all
the bits and add 1, giving us 0b11100011.

Q2.2 (1 point) Octal (base 8, two’s complement)

Solution: 343

Since 8 = 23, we can group 3 binary digits at a time and represent them as one octal
digit. First, we can convert 29 to binary, giving us 0b11100011. Then, since this
binary number only has 8 digits, we can pad it with a 0 so we can split into groups of
3, which gives us 0b 011 100 011. Then, convert each individual group into an octal
digit, which gives us our answer of 3438.

Q2.3 (1 point) Hex (two’s complement)

Solution: 0xE3

Since 16 = 24, we can group the binary digits in groups of 4, giving us 0xE3.

Q2.4 (1 point) Binary (biased with added bias of -127)

Solution: 0b01100010

Since biased + bias = actual, we can subtract the bias from -29, our number, to
determine the number in this biased notation. Subtracting -127 from -29 gives us 98,
and converting to binary gives us 0b01100010.

Convert 1318 to the following representations:

Q2.5 (1 point) Decimal

Solution: 89

1× 82 + 3× 81 + 1× 80 = 89.

Midterm 1 (Question 2 continues. . .) Page 5/18 CS 61C - Spring 2020

(Question 2 continued. . .)

Q2.6 (1 point) Binary (two’s complement)

Solution: 0b01011001

Since 8 = 23, we can replace each octal digit with 3 binary digits, which gives us 0b
001 011 001. Since we’re working with 8 bit binary numbers, we can ignore the most
significant bit (which is 0 anyways), and arrive at 0b01011001.

Q2.7 (1 point) Hex (two’s complement)

Solution: 0x59

Since 16 = 24, we can group binary digits in groups of 4 and replace each group with
the corresponding hexadecimal character. Grouping in 4s gives us 0b 0101 1001, which
translates to 0x59.

Q2.8 (1 point) Binary (biased with added bias of -127)

Solution: 0b11011000

Starting at the decimal representation of 89, we subtract the bias, giving us 216. Then,
we can express 216 as an unsigned binary number, which is 0b11011000.

Midterm 1 Page 6/18 CS 61C - Spring 2020

Question 3 Unions (8 points)

1 #include <stdint.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4

5 union Fun {

6 uint8_t u[4];

7 int8_t i[4];

8 char s[4];

9 int t;

10 };

11

12 int main() {

13 union Fun *fun = calloc(1, sizeof(union Fun));

14

15 fun->i[0] = -1;

16

17 // Part (a)

18 printf("%u\n", fun->u[0]);

19

20 fun->u[0] *= 2;

21

22 // Part (b)

23 printf("%d\n", fun->i[0]);

24

25 fun->t *= -1;

26 fun->t >>= 1;

27

28 // Part (c)

29 printf("%d\n", fun->i[1]);

30

31 fun->s[0] = ’\0’;

32

33 // Part (d)

34 printf("%d\n", fun->t);

35

36 free(fun);

37 return 0;

38 }

Midterm 1 (Question 3 continues. . .) Page 7/18 CS 61C - Spring 2020

(Question 3 continued. . .)

Write what each print statement will print out in the corresponding box. Assume that this
system is little-endian and that right shifts on signed integers are arithmetic.

Q3.1 (2 points)

Solution: 255

Because we are asking for the unsigned representation of the first byte in the union,
we will get the value 255 instead of -1.

Q3.2 (2 points)

Solution: -2

Multiplying u[0] by -2 multiplies i[0] by -2 as well (since they share the same bytes).
Thus, the value printed is -2.

Q3.3 (2 points)

Solution: -1

We negate all the bytes in the union and right shift it by one. This gives us 0xffffff81.
Because of little-endianness, we want the second to last element, which is 0xff. This
is equivalent to -1 in 8-bit signed decimal.

Q3.4 (2 points)

Solution: -256

We set the firstmost byte in the union to “0”. As the remaining bytes are all 1 still,
this means that the remaining number is 0xffffff00. Converting this number to its
positive equivalent in 32-bit two’s complement will net us 0x100, which is equivalent
to 256. Thus, this will print out -256.

Midterm 1 Page 8/18 CS 61C - Spring 2020

Question 4 CS61TREE Memory! (8 points)
For this problem, assume all pointers and integers are four bytes and all characters are one
byte. Consider the following C code (all the necessary #include directives are omitted). C
structs are properly aligned in memory and all calls to malloc succeed. For all of these questions,
assume we are analyzing them right before main returns.

1 typedef struct node {

2 void *data;

3 struct node *left;

4 struct node *right;

5 } node;

6 node* newNode(void *data) {

7 node *n = (node *) malloc(sizeof(node));

8 n->data = data;

9 n->left = NULL; n->right = NULL;

10 return n;

11 }

12 int main() {

13 char *r = \CS 61C Rocks!";

14 char s[] = \CS 61C Sucks!";

15 /* Reddit review... Warning: Nick sh*tposts too! */

16 node nl;

17 nl.data = (void *) r;

18 node *root = newNode((void *) &main);

19 root->left = malloc(strlen(r) + 1);

20 root->right = newNode((void *) s);

21 root->right->left = newNode((void *) r);

22 root->right->right = newNode((void *) &printf);

23 root->left = &nl;

24 }

Each of the following evaluate to an address in memory. In other words, they ”point” some-
where. Where in memory do they point?

Q4.1 (0.5 point) root

Code

Static

Stack

Heap

Solution: The root node is malloced in newNode so it will be stored in the heap.

Midterm 1 (Question 4 continues. . .) Page 9/18 CS 61C - Spring 2020

(Question 4 continued. . .)

Q4.2 (0.5 point) root->data

Code

Static

Stack

Heap

Solution: We passed in a pointer to the main function which is stored in the code.

Q4.3 (0.5 point) root->left

Code

Static

Stack

Heap

Solution: At the end of main, we set the root->left node to the address of nl which
was created on the stack.

Q4.4 (0.5 point) root->left->data

Code

Static

Stack

Heap

Solution: We set the data in the nl data structure to be r. Since r was declared a
char *, it is a pointer to a static string thus it will be in static memory.

Q4.5 (0.5 point) root->right->data

Code

Static

Stack

Heap

Solution: root->right was created with setting the data to root->right. If you
look at the way s was declared (char []), this means it was placed on the stack. Thus
it is pointing to the stack.

Q4.6 (0.5 point) root->right->left->data

Code

Static

Stack

Heap

Solution: This node has the same reasoning as root->left->data.

Q4.7 (0.5 point) &newNode

Code

Static

Stack

Heap

Solution: newNode is located in the code since it is a function which will execute.

Midterm 1 (Question 4 continues. . .) Page 10/18 CS 61C - Spring 2020

(Question 4 continued. . .)

Q4.8 (3 points) How many bytes of memory are allocated but not free()d by this program, if
any?

Solution: 62

We malloc a total of 4 nodes (lines 18, 20, 21, 22). Each node is 12 bytes in size since
we have 3 pointers in each node and all pointers are 4 bytes. We also malloced some
data to root->left of size strlen(r) + 1 = 13 + 1 = 14 (line 19). Since we do not
free any of those pointers, we will leak 4 ∗ 12 + 14 = 62 bytes of data. Note that data
on the stack is automatically free()d, so the node allocated on like 16 does not count.

Q4.9 (1.5 points)

void free_tree(node *n) {

if (n == NULL) return;

free_tree(n->left);

free_tree(n->right);

free(n);

}

Given this free function, if we called free tree(root) after all the code in main is exe-
cuted, this program would have well defined behavior.

True False

Solution: This free tree function would operate correctly SO LONG as every
node was allocated correctly (with malloc or calloc). Since we see that we allo-
cated root->left on the stack (it points to nl, allocated on line 16), if we called
free tree(root), we will end up freeing an address on the stack which is undefined
behavior!

Midterm 1 Page 11/18 CS 61C - Spring 2020

Question 5 The Bananananananana Hunt (15 points)
You’re on a hunt around campus to find the best fresh banana available. You find a note from
the CS61C course staff with clues, but they’re encrypted so that only the best students can
find the bananas. Note that the solutions for each part are not dependent on the
other parts.

Q5.1 (4 points) Your first clue is a string encoded in an integer array info of length len. We
encoded the null-terminated string by placing the ith character in the most significant
byte of ith integer in info. Modify the code below so that the original string is properly
printed and so that there are no memory leaks or undefined behavior.

void clue1(unsigned int* info, int len) {

char* info_to_print = (sizeof(char));

for (int i = 0; i < len; i++) {

info_to_print[i] = (char) ;

}

printf(\%s\n", info_to_print);

;

}

Solution:

Blank 1: malloc
Blank 2: len *

Blank 3: info[i] >> 24 (others possible as well)
Blank 4: free(info to print);

For this question, len is the size of all the characters needed for a properly formatted
string (all the letters and the null terminator). The first step is to allocate the memory
for this buffer on the heap, using malloc or calloc. Next, since the information is
encoded in the most significant bit, a right shift will move the character into the least
significant bit so that a cast to char type will keep the data. Since ints are 4 bytes,
the left shift must be by three bytes (24 bits). Finally, the buffer created to print the
information must be freed to avoid a memory leak.

Midterm 1 (Question 5 continues. . .) Page 12/18 CS 61C - Spring 2020

(Question 5 continued. . .)

Q5.2 (4 points) Having discovered the identity, you follow it and find a large array of double
precision floating point (type double). The clue says you want the 5th smallest element
casted to an integer. True, you could just go through the array but, being a proper CS
student, you decide to first sort the array using a library function and then take the 5th
element. Fortunately, C has a quicksort function in the standard library:

void qsort (void * base, size_t num, size_t size,

int (* comparator) (const void *, const void *));

That is, the function takes four arguments: a pointer to the array, the total number of
elements, the size of each element of the array, and a comparison function. The comparison
function should return negative if the first element is less than the second, 0 if they are
the same, or positive if the first element is bigger. Your code should compile without
warnings.

Clarification during exam: The numbers themselves are all positive, < 225, and separated
by at least 2.

int comp(void *p1, void *p2){

double a = ;

double b = ;

/* C will cast a double to an int automagically */

return ;

}

void clue2(double* info2, int len) {

qsort(, ,

,);

printf(\%i\n",);

}

Solution:

Blank 1: *((double *) p1)

Blank 2: *((double *) p2)

Blank 3: a - b Blank 4: info2

Blank 5: len
Blank 6: sizeof(double)
Blank 7: &comp
Blank 8: (int) info2[4]

Midterm 1 (Question 5 continues. . .) Page 13/18 CS 61C - Spring 2020

(Question 5 continued. . .)

Q5.3 (7 points) You arrive at the room, only to find a door locked with a keycode. Spray
painted on the wall, you see

“How many stairwells have a power-of-two number of steps? Print the answer in hex...”

So close to your goal, you crowdsource this question to your favorite social media. Enlisting
a friend taking CS 186, you end up with an array of step counts for all stairs which are
all positive integers. Create a function to see the total number of stairwells with exactly
a power of 2. Hint: you know X is a power of 2 if and only if X and X-1 have no bits in
common and X is nonzero. You do not need to use all the lines.

void pows_of_2(unsigned int* stairs, int len) {

int matching_entries = 0;

;

;

for (int i = 0; i < len; i++) {

;

if () {

matching_entries += 1;

}

;

}

printf(,);s

}

Solution:

Blank 1: empty
Blank 2: empty
Blank 3: empty
Blank 4: stairs[i] && (stairs[i] & (stairs[i]-1)) == 0

Blank 5: empty
Blank 6: "%x\n"
Blank 7: matching entries

There are multiple valid methods to approach this question. The staff solution requires
the least number of lines, and uses the hint that x and x-1 have no bits in common
for a power of 2. A power of 2 is found for any non-zero value where the logical and
of x and x-1 results in a zero value (thus stairs[i] is checked to ensure a non-zero
value, then (stairs[i] & (stairs[i]-1)) is tested for a zero value.

Another way to check if the entry is a power of two which is possible with the given
lines is to test each bit within the entry and make sure only one bit has a 1 value.

Finally, printf is called with %x, printing the number of entries in hexadecimal (given
by the chart below).

Midterm 1 (Question 5 continues. . .) Page 14/18 CS 61C - Spring 2020

(Question 5 continued. . .)

Print Format Specifier Table

Specifier Output

d or i Signed decimal integer

u Unsigned decimal integer

o Unsigned octal

x Unsigned hexadecimal integer

X Unsigned hexadecimal integer (uppercase)

f Decimal floating point, lowercase

F Decimal floating point, uppercase

e Scientific notation (mantissa/exponent), lowercase

E Scientific notation (mantissa/exponent), uppercase

g Use the shortest representation: %e or %f

G Use the shortest representation: %E or %F

a Hexadecimal floating point, lowercase

A Hexadecimal floating point, uppercase

c Character

s String of characters

p Pointer address

Midterm 1 Page 15/18 CS 61C - Spring 2020

Question 6 Fl at P int u bers (9 points)
You received a sequence of IEEE standard 16-bit floating point numbers from your friend. So
you don’t need to look it up on your green sheet, we will remind you that a 16-bit floating
point is 1 sign bit, 5 exponent bits, and 10 mantissa bits. The bias for the exponent is
-15.

Unfortunately, cosmic rays corrupted some of the data, rendering it unreadable. For the fol-
lowing problems, we will use “x” to refer to a bit that was corrupted (in other words, we don’t
know what the sender wanted that bit to be). For example, if I received the data “0b0xx1”,
the sender sent one of “0b0001”, “0b0101”, “0b0011”, or “0b0111”.

Q6.1 (3 points) You receive the data “0b0x1x0x1x0x1x0x1x”. What is the hexadecimal en-
coding of the biggest number the sender could have sent?

Solution: 0x7777

One property of floating point numbers is that their order is the same as that of
sign-magnitude integers (ignoring NaNs); for example, 0x5555 ¡ 0x7555. In order to
maximize the number, we therefore want to set all the “x”s to 1. This yields the
encoding 0x7777.

Q6.2 (3 points) You receive the data “0b1110xxxxxxxxxxxx”. What is the decimal value of
the smallest number the sender could have sent (i.e. it is less than all of the other
possibilities)? You must provide the decimal form, do not leave as a power of 2 .

Solution: -8188

By the previous observation, the smallest number is encoded by 0xEFFF. This has
sign bit 1, exponent 0b11011 - 15 = 12, and mantissa (1).1111111111 = 2− 2−10. Our
answer is thus −4096 ∗ (2− 2−10) = −8192 + 4 = −8188.

Q6.3 (3 points) For the next number, the sign and exponent are correct but all of the mantissa
was corrupted. The sender did not send a NaN or infinity. What is the smallest possible
positive number the sender could have sent as a power of 2?

Solution: 2−24

The smallest possible power of 2 is when we receive the bits “0b000000xxxxxxxxxx”,
with the corrupted bits being filled by “0b0000000000000001”. This is equal to 2−14 ∗
2−10 = 2−24.

Midterm 1 Page 16/18 CS 61C - Spring 2020

Question 7 RRIISSCC-VV (12 points)
In this question, you will implement a simple recursive function in RISC-V. The function takes
a decimal number as input, then outputs it’s binary representation encoded in the decimal
digits.

int findBinary(unsigned int decimal) {

if (decimal == 0) {

return 0;

} else {

return decimal % 2 + 10 * findBinary(decimal / 2);

}

}

For example, if the input to this function is 10, then the output would be 1010.

1 findBinary:

2 addi sp, sp, -8 # preamble... a0 will have arg and be where

3 # we return

4 sw ra, 4(sp)

5 sw s0, 0(sp)

6

7 beq a0, x0, # base case, we will just return 0

8

9 # set s0 to ??? with a bitwise op

10

11 # set a0 to ??? with a bitwise op

12

13 jal ra, # recursive call

14

15 # load the value 10 into t0

16 mul a0, t0, a0 # a0 = a0 * 10

17

18 # a0 = ???

19 postamble:

20

21 # restore ra

22

23 # restore s0

24

25 # restore sp

26 end:

27 jr ra

28

Solution:

Midterm 1 (Question 7 continues. . .) Page 17/18 CS 61C - Spring 2020

(Question 7 continued. . .)

Blank 1: postamble (base case, returns 0)
Blank 2: andi s0, a0, 1 (stores decimal % 2 into s0)
Blank 3: srli a0, a0, 1 (stores decimal / 2 into a0)
Blank 4: findBinary (recursive call)
Blank 5: li t0, 10 or addi t0, x0, 10 (sets t0 equal to 10)
Blank 6: add a0, a0, s0 (calculates decimal % 2 + 10 * findBinary(decimal / 2))
Blank 7: lw ra, 4(sp) (restore ra)
Blank 8: lw s0, 0(sp) (restore s0, which is the previously saved ”decimal % 2”)
Blank 9: addi sp, sp, 8 (restore sp)

The recursive part of the function stores all of the first part of the return value ”decimal
% 2” on the stack. The second part of the function and postamble are combining all the
return values by ”+” and ”10 * ”.

Midterm 1 Page 18/18 CS 61C - Spring 2020

