
Kolb, Weaver CS 61C Final
Spring 2021 Machine Structures

Note (August 10, 2022): These are extremely rough drafts of rewritten solutions. They definitely
contain errors and unfinished sections, but might have some useful parts for studying.

Print your name: ,
(first) (last)

Print your student ID:

Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I
am aware of the Berkeley Campus Code of Student Conduct and acknowledge that academic
misconduct will be reported to the Center for Student Conduct and may further result in, at
minimum, negative points on the exam and a corresponding notch on Nick’s Stanley Fubar
demolition tool.

Sign your name:

You have 180 minutes. There are 10 questions of varying credit, for a total of 90 points.
For questions with circular bubbles, you may select only one choice.

Unselected option

Only one selected option

For questions with square checkboxes, you may select one or more choices.

You can select

multiple squares

Anything you write that you cross out will not be graded. Anything you write outside the answer
boxes will not be graded.

If an answer requires hex input, make sure you only use capitalized letters! For example, 0xDEAD
BEEF instead of 0xdeadbeef. You will be graded incorrectly otherwise! Please always add the hex
(0x) and binary (0b) prefix to your answers or you will receive 0 points. For all other bases, do not
add the suffix or prefixes.

Do not add units unless the problem explicitly tells you to!
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Question 1 Number Rep (2 points)

Q1.1 (2 points) Convert 528 to base 10. Leave the answer as a plain integer. DO NOT add the
subscript indicating the base.

Solution: 42
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Question 2 Floating Point (3 points)
Consider a 20-bit floating point number with the following components (1 sign bit, 6 exponent
bits, 13 mantissa bits); i.e.,

SEEEEEEMMMMMMMMMMMMM

All other properties of IEEE754 apply (bias, denormalized numbers, ∞, NaNs, etc). The bias
is the usual −(2E−1 − 1), which here would be −(25 − 1) = −31.

Q2.1 (3 points) What is the bit representation (in hex) of the floating-point number -8.25? Your
answer must be in hex, must be prepended with 0x, and all letters must be capitalized.
Do not include any extra leading zeros.

Solution: 0xC4100
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Question 3 Potpourri (16 points)

Q3.1 (2 points) You have a program that spends some percentage of its time waiting for requests
and the rest of the time performing calculations. Suppose you have 8 threads which you
can use to parallelize calculations, with no overhead or non-parallelizable calculations.
What is the maximum fraction of time that your sequential program can spend on waiting
for requests if we would like to achieve at least 4 times speedup? Leave your answer as a
single simplified fraction.

Solution: 1
7

Amdahl’s law says:

Speedup = 1
(1−F )+F

S

where F is fraction of the code that can be sped up, and S is maximum possible
speedup.

F is what we want to solve for here (fraction of code that can be sequential = 1 -
fraction of code that is parallelizable).

S is 8 (we have 8 threads, so we can get 8x speedup).

The desired total speedup is 4.

Plugging all this in:

4 = 1
(1−F )+F

8

Solving gives F = 6
7 . If 6/7 of the code can be parallelized, then 1/7 of the code is

sequential.

The company you work at has a datacenter. Answer the following questions:

Q3.2 (2 points) The Mean Time Between Failures (MTBF) for this particular data center is
4000 hours. The Mean Time To Repair (MTTR) is 3 hours. What is the availability for
this datacenter? Express your answer as a single simplified fraction.

Solution: 3997
4000

MTBF only tells you how much time passes between failures; it doesn’t account for
repair time.

Every 4000 hours, there is 1 failure. That failure takes 3 hours to repair. Therefore,
the system is up for 3997 hours, for an availability of 3997/4000.

Q3.3 (2 points) Your company would like to restrict the annualized failure rate to be 1% for
the individual machines in a large cluster. What does the Mean Time To Failure (MTTF)
have to be to satisfy this annualized failure rate? Assume that the MTTF in this question
is unrelated to that of Q3.2. Write down your answer in years.

Solution: 100

Intuitively, 1% of machines can fail every year, so any given machine should fail once
every 100 years.
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(Question 3 continued. . . )

For each of the following functionalities, select the stage(s) in CALL for which the statement
is true.

Q3.4 (2 points) Replaces pseudo instructions.

Compiler

Assembler

Linker

Loader

Solution: TODO

Q3.5 (2 points) Calculate all absolute addresses.

Compiler

Assembler

Linker

Loader

Solution: TODO

Q3.6 (2 points) Generates parse trees.

Compiler

Assembler

Linker

Loader

Solution: TODO

Q3.7 (2 points) Constructs symbol table.

Compiler

Assembler

Linker

Loader

Solution: TODO
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(Question 3 continued. . . )

A:

for (int i = 0; i < 5000 - 3; i += 3) {

a[i+2] = a[i] + a[i+1];

}

B:

for (int i = 0; i < 5000 - 2; i += 2) {

a[i+2] *= a[i];

}

C:

for (int i = 0; i < 5000 - 3; i++) {

a[i+2] = a[i] + a[i+1];

}

D:

for (int i = 0; i < 5000; i++) {

a[i] = 100;

}

Q3.8 (2 points) Which of the above code blocks would see a performance improvement if we
placed a #pragma omp for over the outer for loop? Select all that apply.

A

B

C

D

E. None of the above

Solution: Note: We think this question had a typo and meant to say #pragma omp

parallel for instead of #pragma omp for.

In A and D, each iteration of the loop reads/writes to unrelated parts of memory. In
A, the i=0 iteration accesses a[0], a[1], and a[2]. Then the next iteration has i=3
and accesses a[3], a[4], and a[5]. In D, each iteration has a different i and only
writes to a[i]. Thus, multithreading the loop will cause performance improvement.

In B and C, multiple iterations of the loop need to access the same parts of memory.
In B, the i=0 iteration accesses a[0] and a[2]. Then the next iteration has i=2 and
accesses a[2] (also used by the previous iteration) and a[4].

In C, the i=0 iteration accesses a[0], a[1], and a[2]. Then the next iteration has
i=1 and accesses a[1] (also used by the previous iteration), a[2] (also used by the
previous iteration), and a[3].

Multithreading B and C will likely introduce data sharing issues (e.g. cache coherency,
false sharing) that may actually slow the program down, or result in minimal or no
performance improvement.
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Question 4 RISCV (15 points)
Note: For the following question, you may NOT use Venus; indeed, the questions have been
written so that using Venus is counterproductive.

Part 1: Mini coding questions

Implement the following functions in RISC-V 32b integer assembly. You may NOT use any
extensions (eg: you cannot use mul and you can’t use floating point or vector extensions). You
may only write one line of RISC-V code per blank. Do NOT include commas.

mm32add epu8:

Inputs: a0 and a1 are vectors (NOT a pointer to the vector) of four 8-bit unsigned integers
less than 100.

Output: a0 returns a vector of four 8-bit unsigned numbers such that result[i] = a0[i] +

a1[i] for 0<=i<4.

Example: If the inputs a0 and a1 were [15,2,3,99] and [5,6,7,99] (encoded as 0x0F020363
and 0x05060763 respectively), the expected output would be [20, 8, 10, 198].

_mm32add_epu8:

___________ # Code line 1

ret

Q4.1 (3 points) Code line 1:

Solution: add a0 a0 a1

floatlessthan:

Inputs: a0 and a1 are positive non-NaN IEEE-754 32-bit floating point numbers.

Output: a0 returns 1 if a0 < a1 and 0 otherwise.

Example: If the inputs a0 and a1 were 1.5 and 1.75, the expected output would be 1. If a0
and a1 were 1.5 and 1.5 respectively, the expected output would be 0.

floatlessthan:

___________ # Code line 2

ret

Q4.2 (3 points) Code line 2:

Solution: slt a0 a0 a1 or sltu a0 a0 a1
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(Question 4 continued. . . )

skipline:

Inputs: None

Output: None

Effect: Skips the next assembly instruction in the caller function. We are only using the 32b
RISC-V ISA (no 16 bit extension). You may assume that the next line of code exists, and is
not a pseudoinstruction.

Exmple: Assume that the following code was run:

addi t0 x0 5

jal skipline

addi t0 t0 300

addi t0 t0 10

Then at the conclusion of this code, t0 would equal to 15.

skipline:

___________ # Code line 3

ret

Q4.3 (3 points) Code line 3:

Solution: addi ra ra 4

Remember that ra stores the address of the instruction we should execute after the
function returns. Adding 4 to ra causes us to return to the next instruction, skipping
one instruction.

endofstring:

Inputs: a0 is a pointer to a nonempty string.

Output: a0 returns a pointer immediately after the end of the string.

Example: Let a0 be the pointer 0x10000000 to string s, which is the string ”Hello”. Then
the expected output would be 0x10000006.

endofstring:

___t0______ # Code line 4.

# You must use t0 as the first register of this instruction.

___________ # Code line 5

___________ # Code line 6

ret
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(Question 4 continued. . . )

Q4.4 (1 point) Code line 4:

Solution: lb t0 0(a0)

High-level idea: Iterate through the characters of the string until you encounter a null
byte (which denotes the end of the string). Return the address of the null byte, plus
1 (since we want the address immediately after the end of the string).

The string is stored in memory (since we have a pointer to the string). For each
character in the string, we need to load the character from memory into a register,
where we can check if that character is the null terminator or not.

Note that a character is 1 byte long, so we use load-byte here, not load-word.

Q4.5 (1 point) Code line 5:

Solution: addi a0 a0 1

Here, we add 1 to the address of the string to move to the next character in the string.
Note that we need to add 1 to the address before checking if the character is null, so
that we can get the address immediately after the null byte.

Q4.6 (1 point) Code line 6:

Solution: bneq t0 x0 endofstring OR bneq x0 t0 endofstring OR bnez t0

endofstring

If the character loaded was not the null terminator (zero), then repeat all the steps
above. Otherwise, we already have the address of the null terminator plus 1 in a0 (the
register where the return value should be), so we can return.

Part 2: RISC-V translation

As a reminder, you many NOT use Venus for this question. As a reminder, hexadecimal strings
should be written with the ”0x” prefix, with CAPITALIZED hex digits (ex. 0xDEADBEEF).
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(Question 4 continued. . . )

Q4.7 (3 points) Translate the following instruction to hexadecimal: srai t0 s3 16. Remem-
ber to include the ”0x” at the beginning!

Solution: 0x4109D293

Opcode: 0b001 0011

Funct3: 0b101

Funct7: 0b010 0000

Instruction type: I* (Note that I* is a 61C-specific instruction type. In official RISC-V
documentation, srai is listed as an I-type instruction, but we use I* to denote the
bit-shift I instructions, which use the top 7 bits of the immediate for the funct7 and
only have a 5-bit immmediate.)

rs1: s3 = x19 = 0b10011

rd: t0 = x5 = 0b00101

Immediate: 16. I* type instructions use a 5-bit unsigned immediate, where 16 is
0b10000.

Assembling together the I* instruction format: funct7 imm rs1 funct3 rd opcode

0b010 0000 10000 10011 101 00101 001 0011

Regrouping bits:

0b0100 0001 0000 1001 1101 0010 1001 0011

Converting to hex:

0x4109D293
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Question 5 Boolean Algebra (2 points)

Q5.1 (2 points) Select all of the following which are equivalent to A+BC.

AA+ (ABC + CA)

A(BC + CBB) + CA

AB + C

CBA+ C(CA+BC)

Solution: Since you’re given options to compare, and the truth tables only have 8
rows in them, one way to solve this question may be to write out 5 truth tables (one
per expression) and compare them.

Another way to do this is to perform Boolean algebra and simplify the terms as much
as possible to see the equality:

1) AA+ (ABC + CA)

0 + (A(BC + C))

A(B + C)

A+BC

2) A(BC + CBB) + CA

A(BC + 0) + CA

A(B + C) + CA

AB +AC + CA

AB +AC

A(B + C)

A+BC

3) AB + C ̸= A+BC

4) CBA+ C(CA+BC)

C(B +A) + C(C +A) +BC)

CB +AC + CC + CA+BC

CB +AC + 0 +AC + CB

CB +AC

C(A+B)

C +AB ̸= A+BC
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Question 6 C Structures (13 points)
Part 1: The Structure of Structures

Assume a 32-bit architecture with RISC-V alignment rules:

Consider the following structure definition and code:

struct foo {

char a;

uint16_t b;

char *c;

struct foo *d;

}

Q6.1 (2 points) What is sizeof(struct foo) (Answer as an integer, with no units)?

Solution: 12

This question (and solution) uses the alignment rule where an n-byte struct field must
start at an n-byte-aligned boundary. For example, char *c is a 4-byte field, so it must
start at a 4-byte-aligned boundary (the offset of c relative to the start of the struct
must be a multiple of 4).

char a takes up 1 byte (byte 0).

The next byte (byte 1) is padding so that b can start at a 2-byte-aligned boundary.

uint16 t b takes up 2 bytes (bytes 2-3).

char *c is a pointer, so it takes up 4 bytes in a 32-bit system (bytes 4-7).

struct foo *d is a pointer, so it takes up 4 bytes in a 32-bit system (bytes 8-11).

In total: 1 + 1 + 2 + 4 + 4 = 12.

Q6.2 (2 points) If b and c are swapped, this increases the size of the structure:

True False

Solution: char a takes up 1 byte (byte 0).

The next 3 bytes (byte 1-3) are padding so that c can start at a 4-byte-aligned bound-
ary.

char *c is a pointer, so it takes up 4 bytes in a 32-bit system (bytes 4-7).

uint16 t b takes up 2 bytes (bytes 8-9).

The next 2 bytes (bytes 10-11) are padding so that d can start at a 4-byte-aligned
boundary.

struct foo *d is a pointer, so it takes up 4 bytes in a 32-bit system (bytes 12-15).

In total: 1 + 3 + 4 + 2 + 2 + 4 = 16.
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(Question 6 continued. . . )

Part 2: Skipping Around

Consider the following code:

struct SLN{

void *data;

struct SLN **next;

}

/* Only the following in the code actually matters:

cmp(find, sl->next[level]->data))

But if you are curious, look up "Skiplist"

*/

int SL_find(void *find, int level, SkipListNode *sl,

(int)(*cmp)(void *, void *){

if(cmp(find, sl->data) == 0) return 1;

if(level == 0 && sl->next[level] == null) return 0;

if(sl->next[level] == null) {

return SL_find(find, level-1, sl, cmp);

}

if(cmp(find, sl->next[level]->data)) > 0)){

return SL_find(find, level-1, sl, cmp);

}

return SL_find(find, level, sl->next[level], cmp);

}

In translating the code cmp(find, sl->next[level]->data)) into RISC-V we need to store
arguments on the stack. So we will have find at sp(0), level at sp(4), sl at sp(8) and cmp

at sp(12). We’re going to break up the translation into pieces.

Q6.3 (1 point) Load find into a0

Solution: lw a0 0(sp)

The question states that find is at sp(0). In other words, the register sp holds an
address (the address of bottom of the stack). This address, plus 0, is the address of
find in memory. Note that void *find is a pointer, so its size is 1 word. We can
load it into memory with the load-word instruction.

Q6.4 (1 point) The next thing we need to do is get sl->next[level]->data into a1. The
RISC-V code for that would be (fill in based on comments):

Load sl into t0

Solution: lw t0 8(sp)

The question states that sl is at sp(8). In other words, the register sp holds an
address, and when we add 8 to this address, we get the address of sl in memory. Note
that SkipListNode *sl is a pointer, so its size is 1 word. We can load it into memory
with the load-word instruction.
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(Question 6 continued. . . )

Q6.5 (1 point) Load level into t1

Solution: lw t1 4(sp)

Similar logic as the previous parts. The question states that level is at sp(4), and
int level is a 4-byte (1 word = 4 bytes) integer.

Q6.6 (1 point) Load sl->next into t0

Solution: lw t0 4(t0)

SkipListNode *sl is currently in t0. Note that sl->next does two things; it deref-
erences the sl pointer to get the SkipListNode struct, then accesses the next field in
the struct.

Looking at the struct definition, we note that void *data takes up the first 4 bytes of
the struct in memory, and struct SLN **next takes up the next 4 bytes of the struct
in memory. Since we want the next field, we want bytes 4-7 of the struct in memory;
in other words, we want to load 4 bytes (1 word) of memory, starting at the address
of the struct (sl, which is in t0), with an offset of 4 (to get the next field).

Q6.7 (2 points) Load sl->next[level] into t0

Solution:

slli t1 t1 2

add t0 t0 t1

lw t0 0(t0)

s1->next is a variable of type struct SLN **. In other words, it’s a pointer to an
array of struct SLN * (an array of pointers). Its value is in t0 from the previous
subpart.

We want to access s1->next[level], the levelth element in the array.

slli t1 t1 2: Each element in the array is a pointer, which is 4 bytes long. To find
the address of the levelth element, we need to first multiply level by 4 to find out
the byte offset of the levelth element. (In other words, this number tells us how
many bytes after the start of the array we can expect to find the levelth element.)

add t0 t0 t1: We add the byte offset we found in the previous instruction (t1) to
the address of the start of the array (t0), putting the result in t0. Now t0 contains
the address of the levelth element of the array.

lw t0 0(t0): Finally, we don’t want the address of the levelth element, we want the
actual element (pointer) in the array. We can get the value in the array in memory
with a load-word instruction. (Note that in C, the bracket syntax s1->next[level] is
actually shorthand for *(s1->next + level), so this last load-word step is performing
the dereference operation.
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(Question 6 continued. . . )

Q6.8 (1 point) Load data into a0

Solution: lw a0 0(t0)

From the previous subpart, t0 now has s1->next[level], which is a struct SLN *

(a pointer). We want to dereference this pointer struct and access its data field.

The idea here is similar to when we were given sl, which was also a struct SLN *,
and wanted to find sl->next. In this case, we want the data field, which is the first 4
bytes in the struct, so we should dereference the pointer to the struct and load a word
with an offset of 0.

Q6.9 (2 points) Finally, how do we call cmp (using t0 as a temporary)

Solution:

lw t0 12(sp)

jalr ra t0

The question states that cmp is at sp(12). cmp is a function pointer (the address of
some instructions in the code section of memory), so we can put this address in t0.
Then, we can use the jalr instruction, which jumps to the address in a register. In
this case, we’re jumping to the address in t0 and remembering the return address in
ra.

Note that we’re using jalr because the address we want to jump to is in a register.
We would use jal if the address we want to jump to was a line of code with a label.
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Question 7 SDS (6 points)

State Machine

Assume input A and input B come from registers. Please include ns in your answer.

Assume all 2-input logical gates have a 10 ns propagation delay. The NOT gate has a 5 ns
delay. All registers have a clk-to-q of 15 ns and setup time of 20 ns.

Q7.1 (2 points) Find the minimum clock period to ensure the validity of the circuit.

Solution: 75 ns

We have the following paths:

• Input A (clock-to-q) → NOT → Register (setup) = 15 ns + 5 ns + 20 ns = 40
ns

• Input A (clock-to-q) → NOT → AND → NOR → AND → Register (setup) =
15 ns + 5 ns + 10 ns + 10 ns + 10 ns + 20 ns = 70 ns

• Input B (clock-to-q) → NAND → AND → NOR → AND → Register (setup) =
15 ns + 10 ns + 10 ns + 10 ns + 10 ns + 20 ns = 75 ns

• Register (clock-to-q) → NOT → NOR → AND → Register (setup) = 15 ns + 5
ns + 10 ns + 10 ns + 20 ns = 60 ns

So we need the max of them which would be 75 ns.
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(Question 7 continued. . . )

Q7.2 (2 points) Find the maximum hold time such that there are no hold time violations.

Solution: 20 ns

For the maximum hold time, we need to look at the same paths to see what would be
the shortest path to get to the register:

• Input A (clock-to-q) → NOT → Register (NO setup) = 15 ns + 5 ns = 20 ns
• Input A (clock-to-q) → NOT → AND → NOR → AND → Register (NO setup)
= 15 ns + 5 ns + 10 ns + 10 ns + 10 ns = 50 ns

• Input B (clock-to-q) → NAND → AND → NOR → AND → Register (NO setup)
= 15 ns + 10 ns + 10 ns + 10 ns + 10 ns = 55 ns

• Register (clock-to-q) → NOT → NOR → AND → Register (NO setup) = 15 ns
+ 5 ns + 10 ns + 10 ns = 40 ns

For this one, when we get to the register, we do NOT want to include the setup time
as we want to see what is the shortest time to get to a register. This means we take
a min of the above paths (which does NOT include the setup) which would be 20 ns.

Q7.3 (2 points) Select the different ways you can decrease the critical path (ignore wire delay)?

Move components closer together

Use transistors instead of AND, OR, and NOT gates

Use AND and OR gates instead of NAND and NOR gates

Add pipeline registers

Simplify circuit (boolean) logic

Make the clock speed faster

Solution: Move components closer together: False. Since we’re ignoring wire delay,
the distance between components does not affect the critical path delay.

Use transistors instead of AND, OR, and NOT gates: False. Logic gates are built out
of transistors, so it doesn’t make sense to replace logic gates with transistors.

Use AND and OR gates instead of NAND and NOR gates: False. In order to preserve
the same logic, we would have to replace the NAND gate with two gates (AND gate,
plus a NOT gate), which would result in additional delay.

Add pipeline registers: True. Splitting the computation into multiple stages means
that the critical path is now the longest path through one stage (between pipeline
registers), instead of through the entire circuit. Another way to think of this one is
that adding additional registers shortens the longest path between any two registers.

Simplify boolean logic: True. Simplifying the circuit logic can result in fewer gates
being used, which would reduce the critical path length.

Make the clock speed faster: False. Shortening the time between rising edges of the
clocks does not affect the length of the longest path. (In fact, shortening the clock
period too much may actually cause design violations like setup time or hold time
violations.)
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Question 8 FSM (8 points)
We want to construct a finite-state machine that determines if adding together two binary
unsigned numbers causes an overflow. The machine consumes two bit strings of equal length,
starting from their least significant bits. After consuming each pair of bits from the two inputs,
the machine outputs 1 if addition of the two strings (as seen so far) would cause an overflow,
or a 0 otherwise.

For example, if the machine consumes the two bit strings 0111 and 0100, the sequence of
output values will be 0, 0, 1, 0.

A diagram for this finite-state machine is shown below. We have given the states generic
placeholder names. Transition labels use the notation x,y/o, where x is a bit read from the first
input string, y is a bit read from the second input string, and o is the output. To simplify, you
are allowed to assign multiple labels to the same arrow in the diagram—each label corresponds
to a different transition with the same start and end states.

Q8.1 (2 points) Which of the following labels (each corresponding to one transition) should be
assigned to Arrow 1 in the diagram?

0,0/0

0,0/1

0,1/0

0,1/1

1,0/0

1,0/1

1,1/0

1,1/1

Solution: Intuitively, one of these states corresponds to the carry-in bit currently
being 1, and the other state corresponds to the carry-in bit currently being 0. We
should start with the carry-in bit being 0, so A is the state where the carry-in bit is
0, and B is the state where the carry-in bit is 1.

Moving from A to B should happen when we trigger an overflow and make the carry-in
bit 1. If the current carry-in bit is 0, this can only happen if our two inputs are 1,
giving us 1 + 1 + 1. In this case, we output 1 because we caused an overflow.
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(Question 8 continued. . . )

Q8.2 (2 points) Which of the following labels (each corresponding to one transition) should be
assigned to Arrow 2 in the diagram?

0,0/0

0,0/1

0,1/0

0,1/1

1,0/0

1,0/1

1,1/0

1,1/1

Solution: Moving from B to B should happen when we trigger an overflow and make
the carry-in bit 1. The carry-in bit is already 1, so overflow will happen if our input
is 0,1 (creating 1 + 0 + 1) or 1,0 (creating 1 + 0 + 1) or 1,1 (creating 1 + 1 + 1). In
this case, we output 1 because we caused an overflow.

Q8.3 (2 points) Which of the following labels (each corresponding to one transition) should be
assigned to Arrow 3 in the diagram?

0,0/0

0,0/1

0,1/0

0,1/1

1,0/0

1,0/1

1,1/0

1,1/1

Solution: Moving from B to A should happen when we do not trigger an overflow
and make the carry-in bit 0. The carry-in bit is already 1, so overflow does not occur
only if our input is 0,0 (creating 0+0+1). In this case, we output 0 since we did not
create an overflow.

Q8.4 (2 points) Which of the following labels (each corresponding to one transition) should be
assigned to Arrow 4 in the diagram?

0,0/0

0,0/1

0,1/0

0,1/1

1,0/0

1,0/1

1,1/0

1,1/1

Solution: Moving from A to A should happen when we do not trigger an overflow
and the carry-in bit stays 0. The carry-in bit is currently 0, so overflow does not occur
if our input is 0,0 (creating 0 + 0 + 0) or 0,1 (creating 0 + 1 + 0) or 1,0 (creating
1 + 0 + 0). In this case, we output 0 since we did not create an overflow.
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Question 9 Datapath (11 points)
Part 1: New Instruction

Given the standard RISC-V datapath (Figure 1), determine if the following is implementable or
not without any additional functional units? Assume the instruction is not a pseudoinstruction
encoding.

Figure 1

Q9.1 (1 point) is null rd, rs1: checks if an input given through rs1 is considered NULL or
not by C standard. The result is returned through rd as a bit.

Implementable Not implementable

Solution: Regfile can support this instruction, since we’re only reading from one
register and writing to one register. (Recall that Regfile supports reading up to two
registers and writing to one register.)

We can use the branch comparator to compare the value in rs1 to 0.

Reading/writing to registers and comparing the values in the registers are the only
operations this instruction needs to do, so we can implement this instruction without
adding hardware.
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(Question 9 continued. . . )

Q9.2 (4 points) What changes would you need to make in order for the instruction to be able to
execute correctly? Assume all modifications and additions are done on top of the existing
single cycle datapath. Select all that apply.

Modify ALU buses.

Modify control logic for ALU/ALUSel.

Modify the control logic for the Branch Comparator.

Modify the control logic for parsing instr[31:0].

Modify the control logic for WBSel.

Modify Branch Comparator logic.

Modify the control signals to the ALU.

Add an additional comparator.

Add additional control signals for the writeback mux.

None of the above.

Solution: TODO double-check this one –Peyrin

Modify ALU buses: False. We don’t need to change the wires being sent to ALU,
because the first input (value of rs1) is something we can already send into the ALU,
and we can use the immediate generator to send the second value (zero) into the ALU.

Modify control logic for ALU/ALUSel: False. We aren’t using the ALU to compute
anything (the comparison is happening in the branch comparator).

Modify the control logic for the Branch Comparator: True.

Modify the control logic for parsing instr[31:0]: True.

Modify the control logic for WBSel: True.

Modify Branch Comparator logic: False.

Modify the control signals to the ALU: False. We aren’t using the ALU to compute
anything.

Add an additional comparator: False. The branch comparator is enough to perform
the comparison we need.

Add additional control signals for the writeback mux: False. WBSel
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(Question 9 continued. . . )

Q9.3 (2 points) is null rd, rs1 is not in a standard RISC-V instruction format; as we’re
attempting to reduce the number of hardware changes in our datapath. We instead choose
to implement our instruction as a pseudoinstruction in the following format. Which of the
following statements is true? Assume earlier changes propagate. Select all that apply.

Format: R-type Instruction

We need to wire x0 as a comparator for all branch comparisons.

We need to provide a second argument x0 when calling the instruction and modify
the control signals.

We need to wire x0 as rs2 and modify the control signals.

We need to provide a second argument x0 as a comparator for all branch comparisons.

It is impossible to represent as an R-Type instruction.
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(Question 9 continued. . . )

Part 2: Cached Datapath - One Cache

We now choose to add caching to the single cycle datapath. We add a single single level cache
that is shared between instruction and data memory and is always accessed prior to a direct
memory access.

Q9.4 (0 points) As we observe our datapath, we see that having heavy caching in addition to
our respective memory arrays does help our average access times in comparison to having
no caching, as is the expected behaviour. However, in our worst-case scenarios, we see that
the time taken is suboptimal. We instead propose an alternative method such that our
memory arrays (IMEM and DMEM) are replaced by caches. We have one shared cache
such that IMEM and DMEM accesses both go through Cache A. What modifications need
to be made to the control logic signals? Give your answer in 10 words or fewer.

Note: this question was dropped.

Solution: Generally speaking, in order to handle caching replacing memory, there
are a few major control logic parts to keep in mind. The write-to-cache signal has
to be specified, as well as what happens when a cache line is dirty. The answer also
should’ve specified some version of a TIO breakdown in order to index and locate data
in the cache. We generally assume all memory we need is in IMEM/DMEM when
that’s part of our datapath, but with caches, we actively know that it’s not the case so
some mention of notifying control on a miss such that either a main memory or disk
access is needed is the last major component. Adding caches to the datapath in reality
is more complicated but these are the main components needed at a broad level.

Q9.5 (0 points) How does missing in the cache affect how our datapath operates? Frame your
answer in terms of how it affects the control signals and hazards in 2 or fewer sentences.

Note: this question was dropped.

Solution: A few key points that should’ve been brought up were that the control
logic will have to handle fetching data on a miss and subsequently updating the cache.
In addition, data hazards due to a miss will take longer to resolve and cause more
cycles to be taken. The control logic will also have to handle properly evicting both
instructions and data from the cache. You could’ve also mentioned that hazards due
to various types of misses could’ve occurred, as instruction and data memory share
the cache and thus can interfere with accesses; think of new instruction blocks being
accessed and kicking out a data block that would be reused later (it’s similar to the
concept of coherency misses).
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(Question 9 continued. . . )

Q9.6 (2 points) Which of the following is always true about our caching setup?

The AMAT for instruction accesses will be different from data accesses since they
reside in different portions of main memory.

Assembly with few control-flow instructions will cause a high hit rate for instruction
accesses.

Instuction accesses will affect data access hit rates.

It is possible for the cache to be entirely filled with data blocks.

None of the above.

Solution: If we’re using the same cache to cache both instructions and data, then
accessing instructions may cause data to be kicked out of the cache.

The AMAT for instruction accesses will be different from data accesses since they
reside in different portions of main memory: This is false because we usually don’t
consider access time for different sections of memory to take different amounts of time.

Assembly with few control-flow instructions will cause a high hit rate for instruction
accesses: This is false, because fetching data may still cause instructions to be kicked
out of the cache.

It is possible for the cache to be entirely filled with data blocks: This is false because
there will always be at least one instruction cached (the most recent one fetched).
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(Question 9 continued. . . )

Part 3: Cached Datapath - Two Caches

We now choose to add caching to the single cycle datapath. We add 2 single level caches; Cache
A is accessed only on instruction fetch and Cache B is accessed only on data memory access
prior to direct memory accesses.

Q9.7 (0 points) As we observe our datapath, we see that having heavy caching in addition to
our respective memory arrays does help our average access times in comparison to having
no caching, as is the expected behaviour. However, in our worst-case scenarios, we see that
the time taken is suboptimal. We instead propose an alternative method such that our
memory arrays (IMEM and DMEM) are replaced by identical caches. Cache A replaces
IMEM and Cache B replaces DMEM. What modifications need to be made to the control
logic signals? Give your answer in 10 words or fewer.

Note: this question was dropped.

Solution: Generally speaking, in order to handle caching replacing memory, there
are a few major control logic parts to keep in mind. The write-to-cache signal has
to be specified, as well as what happens when a cache line is dirty. The answer also
should’ve specified some version of a TIO breakdown in order to index and locate data
in the cache. We generally assume all memory we need is in IMEM/DMEM when
that’s part of our datapath, but with caches, we actively know that it’s not the case so
some mention of notifying control on a miss such that either a main memory or disk
access is needed is the last major component. Adding caches to the datapath in reality
is more complicated but these are the main components needed at a broad level. You
could’ve also mentioned that individual logic would be needed to handle which control
signals address which cache but that the control logic itself could be reused.

Q9.8 (0 points) How does missing in the cache affect how our datapath operates? Frame your
answer in terms of how it affects the control signals and hazards in 2 or fewer sentences.

Note: this question was dropped.

Solution: A few key points that should’ve been brought up were that the control
logic will have to handle fetching data on a miss and subsequently updating the cache.
In addition, data hazards due to a miss will take longer to resolve and cause more
cycles to be taken. The control logic will also have to handle properly evicting both
instructions and data from the cache.
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(Question 9 continued. . . )

Q9.9 (2 points) Which of the following is always true about our caching setup?

The AMAT for Cache A and Cache B will be the same since the caches are identical.

Intended IMEM accesses will cause cache incoherence with intended DMEM accesses
if the memory addresses are close.

Assembly with few control-flow instructions will cause a high hit rate for
Cache A.

Instuction and data accesses will cause both Cache A and Cache B’s states to change
for every access.

None of the above.

Solution: Few control-flow instructions would mean the program has less
branch/jump instructions which would limit the number of times the program will be
accessing different points in the instruction memory. A program running on straight-
line execution will only encounter compulsory misses at the start of the cache block,
then hit for the rest of the instructions within the same block. Jumping around to
different points in the instruction memory can lead to conflict misses which decreases
hit rate.

AMAT cannot be guaranteed identical because we don’t know the instruction and
data access patterns of the program (different hit/miss rates will translate to different
AMAT)

Cache incoherence will happen if both IMEM and DMEM caches hold the same data.
If memory addresses are close, incoherence is not guaranteed to happen.

Cache A and Cache B states is not guaranteed to change states at every access, unless
they are both storing data at the same memory address.
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Question 10 Virtual Memory Caching (14 points)
Assume all systems are 32-bit.

We’re given a system with an 4-way set associative cache of size 512 KiB with 128 B blocks.
How many bits are allocated to the tag, index, and offset bits respectively?

Q10.1 (0.6 point) How many bits are allocated to the tag?

Solution: 15. 32 - 10 - 7 = 15 bits

Q10.2 (0.6 point) How many bits are allocated to the index?

Solution: 10. 219/(4 · 128) = 10 bits.

Q10.3 (0.8 point) How many bits are allocated to the offset?

Solution: 7. Blocks are 27 bits large.

We run the following code with our caching setup unchanged from the previous question. What
is the hit rate of the following lines of code?

#define base_arr_addr 0x12345678

#define ARR_SIZE 4096

#define I_BOUNDARY 2048

#define J_BOUNDARY 4096

#define I_STRIDE 128

#define J_STRIDE 64

int arr[ARR_SIZE];

uint32_t dummy_func(void) {

//Loop 1

for (int i = 0; i < I_BOUNDARY; i += I_STRIDE) {

for (int j = 0; j < J_BOUNDARY; j += J_STRIDE) {

arr[i] = arr[i] + arr[j];

}

}

//Loop 3

for (int j = 0; j < J_BOUNDARY; j += J_STRIDE) {

for (int i = 0; i < I_BOUNDARY; i += I_STRIDE) {

arr[j] = arr[j] * arr[i];

}

}

}
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(Question 10 continued. . . )

Q10.4 (2 points) arr[i] = arr[i] + arr[j]

Solution: 47
48

Ther outer loop executes 16 times and the inner loop per round executes 64 times.
Because the accesses only happen in the inner loop, we can tally the HR for that first
and then see how the outer accesses affect the HR. For the first inner iteration, we see
we have a miss on the arr[0] read, then a hit on arr[1] and on the arr[0] write.
For the next iteration, we get a arr[0] read and write. The next arr[j] is where
accesses become tricky; we’re stepping by 64 ·4B = 256B; this is larger than one block
which means every subsequent arr[j] access will be a miss for one outer iteration.
Thus, for the first outer iteration, our overall HR is 2

3 . On the next outer iteration
however, we notice that the entirety of the array can fit in the cache without conflicts.
Because our I STRIDE is larger than J STRIDE, we know every future arr[i] access
will have already had a compulsory miss by arr[j] in previous iterations and because
nothing is evicted, we have a HR of 1 for all future access. This gives us a total of:
HR = 2

3 · 1
16 + 3

3 · 15
16 = 47

48 . NOTE: the fact our array is 4-way does not affect us here
because despite our 128B jumps in accesses, we have 211 sets available to us which
means we won’t fill up the first way in each set before we fill the second way. Because
we only have 2 nested loops with two access patterns, nothing will get kicked out in
each set for another access pattern.

Q10.5 (2 points) arr[j] = arr[j] * arr[i]

Solution: 1

The entire array can fit in memory. Because the access pattern is effectively the same,
all accesses are hits.

NOTE: for all parts, assume changes propagate unless otherwise stated.

As we’re working on running the code snippet, we realise we want to run different instances of
the same code. We choose to employ virtual memory on our memory space. We have 4 GiB of
virtual memory and 16 MiB of physical memory mapped with a single level page table with a
page size of 4 KiB. We choose to store 8 bits of metadata with each page table entry.
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(Question 10 continued. . . )

Q10.6 (2 points) After running one iteration of the inner loop for the code given in line, how
many physical pages will our page table take up?

Solution: 1024

First, work out the length of the addresses, page numbers, and offsets. Each page is
4 KiB = 212 bytes, so the offset is 12 bits. We have 4 GiB = 232 bytes of virtual
memory, so a virtual address is 32 bits. This leaves 32−12 = 20 bits for the VPN. We
have 16 MiB = 224 bytes of physical memory, so a physical address is 24 bits. This
leaves 24− 12 = 12 bits for the PPN.

Remember that each PTE needs to store the PPN, and optionally, some metadata.
The PPN is 12 bits, and there are 8 bits of metadata for a total of 20 bits per entry.
Assuming a word-aligned system, we round up to the nearest multiple of 4 bytes, which
is 32 bits = 4 bytes per PTE.

The VPN has 20 bits, so there are 220 virtual pages. The page table maps each virtual
page to a physical page, so there are 220 PTEs. Each PTE is 4 bytes, so the page
table takes up 220 × 4 = 222 bytes in total.

Each physical page is 212 bytes, so the page table takes up 222/212 = 210 = 1024
physical pages in memory.

NOTE: because we did not specify alignment for the system, if you solved for a byte-
aligned system, you will get the points for 768 pages.

Alternate solution: Assuming a byte-aligned system, we round up to the nearest byte,
which is 24 bits = 3 bytes per PTE.

As before, there are 220 PTEs, but now, each PTE is 3 bytes, so the page table takes
up 3× 220 bytes in total.

Each physical page is 212 bytes, so the page table takes up 3× 220/212 = 3× 28 = 768
physical pages in memory.

Q10.7 (2 points) If our caching system remains as seen in Q10.6, how many caches would be
needed to fully fit our page table? Give your answer as a decimal to two decimal places.

Solution: 8

Alternate solution: 6 caches

The cache size is 512 KiB = 219 bytes. The page table takes up 222 bytes in total,
which is 222/219 = 23 = 8 caches.

Alternate solution: The page table takes up 3×220 bytes in total, which is 3×220/219 =
3× 2 = 6 caches.
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(Question 10 continued. . . )

Q10.8 (2 points) We now switch our system to having a 2-level page table instead. Assuming
we restart our system and run one iteration of the inner loop, and that the VPN bits are
split evenly between levels, how many pages will our active page tables span?

Solution: 2

No alternate solution.

The L1 page table is active no matter what. However, not all L2 page tables need to
be active in a 2-layer page table. (In other words, some of the entries in the L1 page
table can be invalid; they don’t need to all point to page with L2 page tables.)

In one iteration of the inner loop, we need to access arr[0]. This is one address, so
it forces us to make one L2 page table active, with one entry in it.

Note that since we split the VPN bits evenly, we’re using 10 bits to index into the
L1 page table and 10 bits to index into the L2 page table. This means that all page
tables (L1 and L2) have 210 entries each. Each entry is either 3 or 4 bytes (depending
on your alignment), but either way, the page table fits in one page. (3 × 210 or 212

bytes are both within 1 page = 4 KiB = 212 bytes.)

In total, this is one L1 page table and one L2 page table, for 2 pages.

Q10.9 (2 points) Assume now our system chooses to switch to another process. Which of the
following events will occur. Select all that apply.

Save the page table to the stack.

The user triggers a timer interrupt.

Invalidate the TLB.

None of the above.

Solution: Save page table to stack: False. The stack is part of user-accessible memory,
and the page table is in kernel-accessible (operating system) memory.

The user triggers a timer interrupt: False. The OS triggers the interrupt.

Invalidate the TLB: True. When switching to a different process, the mapping of
VPNs to PPNs is no longer valid.
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(Question 10 continued. . . )

NOTE: due to a staff error in versioning, everyone will receive full points for this
question.

Given the two-level page table we have in Figure 2, translate the following virtual addresses to
physical addresses. Assume all page tables shown are active. If an address does not point to
an active page table at any point, write ”Invalid Address”.

Q10.10 (0 points) Address: 0xBFC90AEA

Solution: This question is probably broken, but here’s how you would try to solve it:

Write the address out in binary: 0b1011 1111 1100 1001 0000 1010 1110 1010

Group the L1 VPN, L2 VPN, and offset bits: 0b10 1111 1111 00 1001 0000 1010

1110 1010

Use the L1 VPN bits to index into the L1 page table. Usually this would be at an
identifiable location like the first (L1 VPN = 0x000) or last (L1 VPN = 0x3FF) entry
in the page table. Here it’s not really clear which element of the L1 page table we
want, but let’s pretend it’s the third from the bottom, with a protruding arrow. This
tells us to look at the bottom L2 page table.

We use the L2 VPN bits to index into the bottom L2 page table. Again, this is usually
at a more identifiable location. You should then be able to read off this page table
entry to figure out the PPN. Then attach the offset after the PPN to get the physical
address.
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