
RISC-V Instruction Formats
Instructor: Steven Ho

We__
are__

here._

Great Idea #1: Levels of
Representation/Interpretation

6/27/2018 CS61C Su18 - Lecture 7 2

lw t0, 0(x2)
lw t1, 4(x2)
sw t1, 0(x2)
sw t0, 4(x2)

Higher-Level Language
Program (e.g. C)

Assembly Language
Program (e.g. RISCV)

Machine Language
Program (RISCV)

Hardware Architecture Description
(e.g. block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture
Implementation

We__
are__

here._

• Stored-Program Concept

• R-Format

• I-Format

• Administrivia

• S-Format

• SB-Format

• U-Format

• UJ-Format

Agenda

36/27/2018 CS61C Su18 - Lecture 7

Big Idea: Stored-Program Concept

• programs can be stored in memory as numbers

• Before: a number can mean anything
• Now: make convention for interpreting

numbers as instructions

4

INSTRUCTIONS ARE DATA

6/27/2018 CS61C Su18 - Lecture 7

Introduction to Machine Language
Instructor: Steven Ho

• Divide the 32 bits of an instruction into
“fields”
– regular field sizes → simpler hardware
– will need some variation….

• Define 6 types of instruction formats:
– R-Format I-Format S-Format U-Format

SB-Format UJ-Format

Instructions as Numbers

6

31 0

• By convention, RISCV instructions are each
1 word = 4 bytes = 32 bits

6/27/2018 CS61C Su18 - Lecture 7

The 6 Instruction Formats
• R-Format: instructions using 3 register inputs

– add, xor, mul —arithmetic/logical ops

• I-Format: instructions with immediates, loads

– addi, lw, jalr, slli
• S-Format: store instructions: sw, sb
• SB-Format: branch instructions: beq, bge
• U-Format: instructions with upper immediates

– lui, auipc —upper immediate is 20-bits

• UJ-Format: jump instructions: jal

The 6 Instruction Formats

• Stored-Program Concept

• R-Format

• I-Format

• Administrivia

• S-Format

• SB-Format

• U-Format

• UJ-Format

Agenda

96/27/2018 CS61C Su18 - Lecture 7

R-Format Instructions (1/3)
• Define “fields” of the following number of bits

each: 7 + 5 + 5 + 3 + 5 + 7 = 32

• Each field has a name:

• Each field is viewed as its own unsigned int
– 5-bit fields can represent any number 0-31,

while 7-bit fields can represent any number 0-128,
etc.

10

31 0
7 75 5 3 5

funct7 opcoders2 rs1 funct3 rd
31 0

6/27/2018 CS61C Su18 - Lecture 7

• opcode (7): partially specifies operation

– e.g. R-types have opcode = 0b0110011,
SB (branch) types have opcode = 0b1100011

• funct7+funct3 (10): combined with opcode,
these two fields describe what operation to
perform

• How many R-format instructions can we encode?
– with opcode fixed at 0b0110011, just funct varies:

(27) x (23)= (210) = 1024

R-Format Instructions (2/3)

11

funct7 opcoders2 rs1 funct3 rd
31 0

6/27/2018 CS61C Su18 - Lecture 7

R-Format Instructions (3/3)

• rs1 (5): 1st operand (“source register 1”)
• rs2 (5): 2nd operand (second source register)
• rd (5): “destination register” — receives the result

of computation

• Recall: RISCV has 32 registers
– A 5 bit field can represent exactly 25 = 32 things

(interpret as the register numbers x0-x31)

126/27/2018 CS61C Su18 - Lecture 7

funct7 opcoders2 rs1 funct3 rd
31 0

rd = t0 = x5
rs1 = t1 = x6
rt2 = t2 = x7

Reading from the Green Sheet

13

31 0
??? ?????? ??? ??? ???

funct7 opcoders2 rs1 funct3 rd

add t0 t1 t2

0 7 6 0 0x33

6/27/2018 CS61C Su18 - Lecture 7

5

• RISCV Instruction: add x5,x6,x7

Field representation (decimal):

Field representation (binary):

R-Format Example

14

two

0 0x337 6 0 5
31 0

0000000 011001100111 00110 000 00101
31 0

6/27/2018 CS61C Su18 - Lecture 7

hex representation: 0x 0073 02B3
decimal representation: 7,537,331

Called a Machine Language Instruction

All RV32 R-format instructions

15

• Stored-Program Concept

• R-Format

• I-Format

• Administrivia

• S-Format

• SB-Format

• U-Format

• UJ-Format

Agenda

166/27/2018 CS61C Su18 - Lecture 7

I-Format Instructions (1/4)

• What about instructions with immediates?
– 5-bit field too small for most immediates

• Ideally, RISCV would have only one instruction
format (for simplicity)
– Unfortunately here we need to compromise

• Define new instruction format that is mostly
consistent with R-Format
– First notice that, if instruction has immediate,

then it uses at most 2 registers (1 src, 1 dst)

176/27/2018 CS61C Su18 - Lecture 7

I-Format Instructions (2/4)

• Define “fields” of the following number of bits
each: 12 + 5 + 3 + 5 + 7 = 32 bits

• Field names:

• Key Concept: Only imm field is different from
R-format: rs2 and funct7 replaced by
12-bit signed immediate, imm[11:0]

18

12 3 5 7
31 0

6/27/2018 CS61C Su18 - Lecture 7

5

imm[11:0] func3 rd opcode
31 0

rs1

• opcode (7): uniquely specifies the
instruction

• rs1 (5): specifies a register operand
• rd (5): specifies destination register that

receives result of computation

196/27/2018 CS61C Su18 - Lecture 7

imm[11:0] func3 rd opcode
31 0

rs1

I-Format Instructions (3/4)

I-Format Instructions (4/4)

• immediate (12): 12 bit number
– All computations done in words, so 12-bit

immediate must be extended to 32 bits

– always sign-extended to 32-bits before use in an
arithmetic operation

206/27/2018 CS61C Su18 - Lecture 7

imm[11:0] func3 rd opcode
31 0

rs1

• Can represent 212 different immediates
– imm[11:0] can hold values in range [-211 , +211)

???

I-Format Example (1/2)

21

addi x15,x1,-50

6/27/2018 CS61C Su18 - Lecture 7

rd = x15
rs1 = x1

??? ? ??? ???
31 0

00001

imm[11:0] func3 rd opcoders1

111111001110 011110 0x13

I-Format Example (2/2)

• RISCV Instruction: addi x15,x1,-50

Field representation (binary):

hex representation: 0x FCE0 8793
decimal representation: 4,242,573,203

Called a Machine Language Instruction

22

two

6/27/2018 CS61C Su18 - Lecture 7

??? ? ???
31 0

00001111111001110 01111000 0010011

All RISCV I-Type Arithmatic
Instructions

23

 5

Question: If the number of registers were halved,
which statement is true?

24

There must be more R-type instructions(A)

There must be less I-type instructions(B)

Shift amounts would change to 0-63(C)

I-type instructions could have 2 more
immediate bits

(D)

imm[11:0] func3 rd opcode
31 0

rs1
31 012 3 5 74

imm[13:0] func3 rd opcode
31 0

rs1
31 014 3 4 7

• Stored-Program Concept

• R-Format

• I-Format

• Administrivia

• S-Format

• SB-Format

• U-Format

• UJ-Format

Agenda

256/27/2018 CS61C Su18 - Lecture 7

Administrivia

266/27/2018 CS61C Su18 - Lecture 7

• Guerrilla Session today! 4-6PM, Cory 540AB
• HW1 Due Thursday (6/28)
• Project Due on Friday (6/29)
– Submission Policy:
– Testing framework has been released
– You can do it!! :D

• HW2 Due next Friday (7/06)
• Review Session this Saturday (6/30), 2-4PM
• Guerilla Session part 2, this Sunday (7/01)

2-4PM, Cory 540AB
– This will also be helpful for the midterm! (That’s

why we moved it up)

• Stored-Program Concept

• R-Format

• I-Format

• Administrivia

• S-Format

• SB-Format

• U-Format

• UJ-Format

Agenda

276/27/2018 CS61C Su18 - Lecture 7

Load Instructions are also I-Type

• The 12-bit signed immediate is added to the
base address in register rs1 to form the
memory address
– This is very similar to the add-immediate

operation but used to create address, not to
create final result

• Value loaded from memory is stored in rd
28

imm[11:0] func3 rd opcode
31 0

rs1

offset[11:0] width dst LOADbase

I-Format Load Example

29

imm[11:0] func3 rd opcode
31 0

rs1

offset[11:0] width dst LOADbase

• lw x14, 8(x2)

000000001000 010 01111 000001100010
imm=+8 LW rd=14 LOADrs1=2

All RV32 Load Instructions

• LBU is “load unsigned byte”
• LH is “load halfword”, which loads 16 bits (2 bytes) and

sign-extends to fill destination 32-bit register
• LHU is “load unsigned halfword”, which zero-extends 16 bits

to fill destination 32-bit register
• There is no LWU in RV32, because there is no sign/zero

extension needed when copying 32 bits from a memory
location into a 32-bit register

30

• Stored-Program Concept

• R-Format

• I-Format

• Administrivia

• S-Format

• SB-Format

• U-Format

• UJ-Format

Agenda

316/27/2018 CS61C Su18 - Lecture 7

S-Format Used for Stores

• Store needs to read two registers, rs1 for base memory
address, and rs2 for data to be stored, as well as need
immediate offset!

• Can’t have both rs2 and immediate in same place as other
instructions!

• Note: stores don’t write a value to the register file, no rd!
• RISC-V design decision is move low 5 bits of immediate to

where rd field was in other instructions – keep rs1/rs2
fields in same place

• register names more critical than immediate bits in hardware
design

32

imm[11:5] opcoders2 rs1 func3 imm[4:0]
31 0

S-Format Example

sw x14, 8(x2)

33

imm[11:5] opcoders2 rs1 func3 imm[4:0]
31 0

00000000 010001101110 00010 010 01000
off[11:5]

= 0 STORErs2=14 rs1=2 SW off[4:0]
= 8

All RV32 Store Instructions

34

• Stored-Program Concept

• R-Format

• I-Format

• Administrivia

• S-Format

• SB-Format

• U-Format

• UJ-Format

Agenda

356/27/2018 CS61C Su18 - Lecture 7

Branching Instructions
• beq, bne,bge,blt
– Need to specify an address to go to

– Also take two registers to compare

– Doesn’t write into a register (similar to stores)

• How to encode label, i.e., where to branch to?

366/27/2018 CS61C Su18 - Lecture 7

Branching Instruction Usage

• Branches typically used for loops (if-else,
while, for)
– Loops are generally small (< 50 instructions)

• Recall: Instructions stored in a localized area
of memory (Code/Text)
– Largest branch distance limited by size of code
– Address of current instruction stored in the

program counter (PC)

376/27/2018 CS61C Su18 - Lecture 7

PC-Relative Addressing

• PC-Relative Addressing: Use the immediate
field as a two’s complement offset to PC
– Branches generally change the PC by a small

amount
– Can specify ± 211 addresses from the PC

• Why not use byte address offset from PC as
the immediate?

386/27/2018 CS61C Su18 - Lecture 7

Branching Reach

• Recall: RISCV uses 32-bit addresses, and memory
is byte-addressed

• Instructions are “word-aligned”: Address is
always a multiple of 4 (in bytes)

• PC ALWAYS points to an instruction
– PC is typed as a pointer to a word

– can do C-like pointer arithmetic

• Let immediate specify #words instead of #bytes
– Instead of specifying ± 211 bytes from the PC,

we will now specify ± 211 words = ± 213 byte addresses
around PC

396/27/2018 CS61C Su18 - Lecture 7

Branch Calculation

• If we don’t take the branch:
PC = PC+4 = next instruction

• If we do take the branch:
PC = PC + (immediate*4)

• Observations:
– immediate is number of instructions to move

(remember, specifies words) either forward (+) or
backwards (–)

406/27/2018 CS61C Su18 - Lecture 7

RISC-V Feature, n×16-bit
instructions

• Extensions to RISC-V base ISA support 16-bit
compressed instructions and also variable-length
instructions that are multiples of 16-bits in length

• 16-bit = half-word
• To enable this, RISC-V scales the branch offset to be

half-words even when there are no 16-bit instructions
• Reduces branch reach by half and means that ½ of

possible targets will be errors on RISC-V processors that
only support 32-bit instructions (as used in this class)

• RISC-V conditional branches can only reach ± 210 × 32-bit
instructions either side of PC

41

• B-format is mostly same as S-Format, with two
register sources (rs1/rs2) and a 12-bit
immediate

• But now immediate represents values -212 to
+212-2 in 2-byte increments

• The 12 immediate bits encode even 13-bit
signed byte offsets (lowest bit of offset is always
zero, so no need to store it)

RISC-V B-Format for Branches

42

imm[12|10:5] opcoders2 rs1 func3 imm[4:1|11]

31 0

7 75 5 3 5

Branch Example (1/2)

• RISCV Code:
Loop: beq x19,x10,End
 add x18,x18,x10
 addi x19,x19,-1
 j Loop
End: <target instr>

• Branch offset =
• (Branch with offset of 0, branches to itself)

43

Start counting from
instruction AFTER the
branch

1

2

3

4

6/27/2018 CS61C Su18 - Lecture 7

4×32-bit instructions = 16 bytes

Branch Example (1/2)

• RISCV Code:
Loop: beq x19,x10,End
 add x18,x18,x10
 addi x19,x19,-1
 j Loop
End: <target instr>

44

Start counting from
instruction AFTER the
branch

1

2

3

4

6/27/2018 CS61C Su18 - Lecture 7

??????? 110001101010 10011 000 ?????
31 07 75 5 3 5

BRANCHrs2=10 rs1=19 BEQ

beq x19,x10,offset = 16 bytes
13-bit immediate, imm[12:0], with value 16

 0000000010000

Branch Example (1/2)

456/27/2018 CS61C Su18 - Lecture 7

0 000000 110001101010 10011 000 1000 0
31 0

imm[12|10:5] imm[4:1|11]

imm[0] discarded,

always zero

RISC-V Immediate Encoding

• Why is it so confusing?!?!

46
Upper bits sign-extended from inst[31] always

Only bit 7 of instruction changes role in
immediate between S and B

All RISC-V Branch Instructions

47

• Does the value in branch immediate field
change if we move the code?
– If moving individual lines of code, then yes

– If moving all of code, then no (why?)

• What do we do if destination is > 210
instructions away from branch?
– Other instructions save us:

Questions on PC-addressing

486/27/2018 CS61C Su18 - Lecture 7

beq x10,x0,far bne x10,x0,next
next instr → j far
 next: # next instr

Meet the $taff

49

Sukrit Suvansh

Roadside Sign
“Help, can’t find my
roadsign”

"Do not sushi enter"
(put picture)

Greatest Weakness
Committing to too
many things

Binging TV

Favorite artist Kanye West Joshua Radin

Favorite meme of
all time

All Spongebob
memes

Avocado kid

6/27/2018 CS61C Su18 - Lecture 7

Agenda

• Stored-Program Concept

• R-Format

• I-Format

• Administrivia

• S-Format

• SB-Format

• U-Format

• UJ-Format

506/27/2018 CS61C Su18 - Lecture 7

• How do we deal with 32-bit immediates?
– Our I-type instructions only give us 12 bits

• Solution: Need a new instruction format for
dealing with the rest of the 20 bits.

• This instruction should deal with:
– a destination register to put the 20 bits into
– the immediate of 20 bits
– the instruction opcode

Dealing With Large Immediates

516/27/2018 CS61C Su18 - Lecture 7

U-Format for “Upper Immediate”
instructions

• Has 20-bit immediate in upper 20 bits of
32-bit instruction word

• One destination register, rd
• Used for two instructions
– LUI – Load Upper Immediate
– AUIPC – Add Upper Immediate to PC

52

imm[31:12] opcoderd
31 0

20
U-immediate[31:12]

7
LUI/AUIPC

5
dest

• lui writes the upper 20 bits of the
destination with the immediate value, and
clears the lower 12 bits

• Together with an addi to set low 12 bits, can
create any 32-bit value in a register using two
instructions (lui/addi).

lui x10, 0x87654 # x10 = 0x87654000
addi x10, x10, 0x321 # x10 = 0x87654321

LUI to create long immediates

536/27/2018 CS61C Su18 - Lecture 7

• How to set 0xDEADBEEF?

lui x10, 0xDEADB # x10 = 0xDEADB000
addi x10, x10,0xEEF # x10 = 0xDEADAEEF

addi 12-bit immediate is always sign-extended!
- if top bit of the 12-bit immediate is a 1, it will

subtract -1 from upper 20 bits

Corner Case

546/27/2018 CS61C Su18 - Lecture 7

• How to set 0xDEADBEEF?

lui x10, 0xDEADC # x10 = 0xDEADC000
addi x10, x10,0xEEF # x10 = 0xDEADBEEF

Pre-increment value placed in upper 20 bits, if sign bit
will be set on immediate in lower 12 bits.

Assembler pseudo-op handles all of this:
li x10, 0xDEADBEEF # Creates two instructions

Solution

556/27/2018 CS61C Su18 - Lecture 7

AUIPC

56

• Adds upper immediate value to PC and places
result in destination register

• Used for PC-relative addressing

• Label: auipc x10, 0
– Puts address of label into x10

Agenda

• Stored-Program Concept

• R-Format

• I-Format

• Administrivia

• S-Format

• SB-Format

• U-Format

• UJ-Format

576/27/2018 CS61C Su18 - Lecture 7

UJ-Format Instructions (1/3)

• For branches, we assumed that we won’t
want to branch too far, so we can specify a
change in the PC

• For general jumps (jal), we may jump to
anywhere in code memory
– Ideally, we would specify a 32-bit memory address

to jump to

– Unfortunately, we can’t fit both a 7-bit opcode
and a 32-bit address into a single 32-bit word

– Also, when linking we must write to an rd register
586/27/2018 CS61C Su18 - Lecture 7

UJ-Format Instructions (2/3)

• jal saves PC+4 in register rd (the return address)
• Set PC = PC + offset (PC-relative jump)
• Target somewhere within ±219 locations, 2 bytes apart
• ±218 32-bit instructions
• Reminder: “j” jump is a pseudo-instruction—the assembler

will instead use jal but sets rd=x0 to discard return address
• Immediate encoding optimized similarly to branch instruction

to reduce hardware cost

596/27/2018 CS61C Su18 - Lecture 7

imm[20|10:1|11|19:12] opcoderd
31 0

20
offset[31:12]

7
JAL

5
dest

UJ-Format Instructions (2/3)

• # j pseudo-instruction

• j Label = jal x0, Label # Discard return address

• # Call function within 2
18

 instructions of PC

• jal ra, FuncName

• Why is the immediate so funky?

– Similar reasoning as for branch immediates
606/27/2018 CS61C Su18 - Lecture 7

imm[20|10:1|11|19:12] opcoderd
31 0

20
offset[31:12]

7
JAL

5
dest

jalr Instruction (I-Format)

• jalr rd, rs1, offset
• Writes PC+4 to rd (return address)
• Sets PC = rs1 + offset
• Uses same immediates as arithmetic & loads

– no multiplication by 2 bytes

61

imm[11:0] func3 rd opcode
31 0

rs1
offset 0 dest JALRbase

Uses of jalr

ret and jr psuedo-instructions

ret = jr ra = jalr x0, ra, 0

Call function at any 32-bit absolute address

lui x1, <hi 20 bits>

jalr ra, x1, <lo 12 bits>

Jump PC-relative with 32-bit offset

auipc x1, <hi 20 bits>

jalr x0, x1, <lo 12 bits>

62

imm[11:0] func3 rd opcode
31 0

rs1
offset 0 dest JALRbase

63

Question: When combining two C files into one
executable, we can compile them independently
and then merge them together.

When merging two or more binaries:

1) Jump instructions don’t require any changes
2) Branch instructions don’t require any changes

F F(A)
F T(B)
T F(C)
T T(D)

1 2

Summary of RISC-V Instruction
Formats

64

• The Stored Program concept is very powerful
– Instructions can be treated and manipulated the

same way as data in both hardware and software

• RISCV Machine Language Instructions:

Summary

656/27/2018 CS61C Su18 - Lecture 7

