CS70 Fall 2013
 Discrete Math and Probability Theory

Umesh V. Vazirani

U.C. Berkeley

Lecture 7: Bijections \& RSA

$E[4024007119763398]=\frac{1902464973302875}{\downarrow}$
Amazon or Ebay

A major factor in the success of the Allies from the second half of 1941 onwards was the cracking of the Enigma machine.

$E[4024007119763398]=1902464973302875$

Amazon or Ebay

IN RSA WE TRUST
158

$$
E(x)=x^{e}(\bmod N) . \quad \underline{e=3}
$$

Rivest, Shamir Adleman.

$$
\begin{aligned}
& N=P \cdot Q \\
& P=3 \quad Q=5
\end{aligned}
$$

$$
\begin{aligned}
&N, e)=(15,3) \\
& x=2 \\
& 2^{3}(\operatorname{mad} 15)=8
\end{aligned}
$$

-----BEGIN RSA PRIVATE KEY-----
MIICWwIBAAKBgQCkblMUCt 4s 42BVmvJCpq9HEi8Xzvq63E5jVjS5unNLeEQ9xmxp pCWzYQKdCQQ/cj3YJ90wWkV3tzbkJi PMEriu3qe20oI8fCRZCViWQ4ujKTY/kX9d xyOUKX8Kzgq9jZsvGReq1Y7s $2 q$ I36z9XUzzyqrt5GUuQfqejmf 6ETInwPQIDAQAB Ffkdrei8gjoaioxaj47afajk38aladld9685rCX7ZtQEkx4qPDlqqBMMGVTT/8Q34 hugrap+BIgSTzHCLB6I4DwiksUpR08x0hf0oxqqjMo0KykhzDfuUfxR85JHUrFZM GznurVhfsBXX4Il9Tgc/RPzD32FZ6gaz9sFumJh0LKKadeECQQDWOf 6 6+nIAvmyH aRINErBSlK+xvfjkjie94kfjkq9pyNyoOStYLG/DRPlEzAIA6oQnowGgs6gwaibg g7yVTgBpAkEAxH6dcwhIDRTILvtUdKSWB 6vdhtXFGdebaU4cuUOW2kWwPpyIj 4XN D+rezwfptmeor34DCA/QKCI/BWkbFDG2tQJAVAH971nvAuOp46AMeBvwETJFg8qw Oqw81x02X6TMEEm4Xi+tE7K5UTXnGld2Ia3VjUWbCaUhm3rFLB39Af/IoQJAUn/G -5GKjtN26sLk5sRjqXzjwcVPJ/Z6bdA6Bx71q1cvFFqsi3XmDxTRz6LG4arBIb相K dhjfuey 73950 roC7MQJAYTfwPZ8/4x/USmA4vx9FKdADdDoZnA9ZSwezmaqa 4 4My bJ0sY/ \quad mNU+Z4ldVIkcevumwcxqLE399hjrXmhzlBQ==
-----END RSA PRIVATE KEY-----

IN RSA WE TRUST

$$
N=15
$$

$(15,3)$ Publickey
(N, d) Privateky
$D(E(x))=x$
$N=15, d=3$.

$$
\begin{aligned}
& E(x)=x^{e}(\bmod N) . \\
& D(y)=y^{d}(\bmod N) . \\
& 111 \\
& x \quad D=E^{-1}
\end{aligned}
$$

$$
y=8
$$

$8^{3}(\operatorname{men} 15)$
8.8.8 (md is)
$4 \cdot 8 \mathrm{md} \cdot 5=2$

One way to shave that f s a byectin so to shaw $\exists g: \quad g(f(x))=x \quad \forall x \in A$.

$\bmod m \quad 59 \equiv 3(\bmod 7)$

$$
\begin{array}{ll}
& 59=7 \times 8+3 \\
+,-, x \\
& 3^{2}(\operatorname{md} 7)=2(\bmod 7) \\
3^{50} \\
= & 3^{48+2}(\operatorname{md} 7) \\
= & 3^{6 \times 8+2} \times 3^{4}=4(\operatorname{mdd} 7) \\
= & \left(3^{6}\right)^{8} \cdot 3^{2}(\operatorname{md} 7)
\end{array}
$$

$$
\begin{aligned}
& \text { Division: Divisim } \longleftrightarrow \text { Multiplicatin } \\
& a \cdot b=c \quad a=\frac{c}{b} \\
& \frac{4=3 \times 6(m \times 7)}{1-3 \times 5(m+2)} \quad \begin{array}{l}
3=\frac{4}{6}(m \times 7) \\
3=\frac{1}{5}(m+7)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Divide by a (malm) } \\
& \text { Find } x \text { : } a x=1(m-d m) \\
& a x-1=m y \\
& a x-m y=1 \\
& \left.\begin{array}{cc}
\text { Extended Enchd : } & \operatorname{gcd}(a, b)=1 \\
\Leftrightarrow \exists x, y: & a x+b y=1
\end{array}\right\} \\
& \begin{array}{ll}
\operatorname{gcd}(a, m) & a x+(m y)=1 . \\
& x=a^{-1}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& a=4 \quad m=15 \quad \operatorname{ged}(4,15)=1 . \\
& \left.\begin{array}{l}
4\left(\begin{array}{c}
x \\
11 \\
4
\end{array}\right)+15 y=1 \\
\frac{1}{4} \begin{array}{l}
11
\end{array} \\
m+15=4
\end{array} \right\rvert\, \begin{array}{cc}
a=8 & m=15 \\
8 x+15 y=1 \\
11 & -1 . \\
2 & -1 .
\end{array}
\end{aligned}
$$

$$
\operatorname{gcd}(47,20)
$$

$$
\begin{aligned}
& \begin{array}{l}
47=20 \times 2+7 \\
20=7 \times 2+6 \\
7=6 \times 1+0 \\
6=1 \times 6+0
\end{array} \\
& \operatorname{lgcd(47,20)} \begin{array}{l}
=\operatorname{gcd}(27,20) \\
=\operatorname{gcd}(7,20) \\
=\operatorname{gcd}(7,13)
\end{array}
\end{aligned}
$$

Fermat's Last Theorem

No positive integers a, b, c satisfy $a^{n}+b^{n}=c^{n}$ for $n>2$.

Around 1637, Fermat wrote his Last Theorem in the margin of his Copy of Diophantus' Arithmetica:
it is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in general, any power higher than the second, into two like powers. I have discovered a truly marvelous proof of this, which this margin is too narrow to contain.

Andrew Wiles 1995.

Theorem 6.1: [Fermat's Little Theorem] For any prime p and any $a \in\{1,2, \ldots, p-1\}$, we have $a^{p-1}=$
$1 \bmod p$.

$$
\begin{array}{lll}
a^{(p-1) k} \equiv 1(\bmod p) & \forall a & a^{p}=a(\bmod p) \\
p=11 & a^{(p-1) k+1}=a(\bmod p) \\
a=3 & 1=3^{10} & (m-d \quad 11)
\end{array}
$$

$$
-2=3^{2}=9 \quad-2 \times 3=-6=3^{3}
$$

$$
\begin{aligned}
& 1=12=-6 \times-2=3^{3} \times 3^{2}=3^{5} \\
& 1=3^{10}(m d(1) \\
& 1=3^{10 \times 5}(m d 11) \\
& =\left(3^{10}\right)^{5}
\end{aligned}
$$

Theorem: $N=P \cdot Q$ old mins

$$
\begin{aligned}
& \begin{array}{l}
\forall a \quad a^{(P-1)(Q-1) K+1}=a(\bmod N) \\
\hline \begin{array}{l}
\text { Amazm }(N, d) \text { private } \\
P, Q
\end{array} \quad \begin{array}{l}
Y / u \\
3
\end{array}(N, e) \text { publickey. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { e has } \frac{\text { an inverse m-d }(P-1)(Q-1)}{(Q-1)} \\
& d e=1 d e^{m n d}((p-1)(Q-1)) \\
& n\left((E(x))=\left(x^{\bar{c}}\right)^{d} m i N^{x^{d c}}=x^{1+p-1)(Q-1) k}=x\right. \text {. }
\end{aligned}
$$

Figure 1: Multiplication by $(3 \bmod 7)$

