Modular Arithmetic

1. In class you learned how to compute $\operatorname{gcd}(a, b)$ using Euclid's algorithm. Now prove that for every number d such that $d \mid a$ and $d \mid b$, we must have $d \mid \operatorname{gcd}(a, b)$. Try to provide a mathematically rigorous proof.
2. Find out whether the equation $51 x=1(\bmod 113)$ has a solution, and find one if it does. What about the equation $85 x=119(\bmod 221)$?
3. Prove that if $x=y(\bmod 3)$ and $x=y(\bmod 5)$ then $x=y(\bmod 15)$.
4. Prove the following:

- If $x=y(\bmod n)$ and $z=w(\bmod n)$ then $x z=y w(\bmod n)$.
- If x has two modular inverses y and $z \bmod n$, then $y=z(\bmod n)$.

5. Prove that Fibonacci numbers $\bmod n$ become periodic. Find an upper-bound on the length of the period as a function of n. Next, prove that if $a \mid b$ then $F_{a} \mid F_{b}$. Challenge: first prove that $\operatorname{gcd}\left(F_{a}, F_{b}\right)=$ $\operatorname{gcd}\left(F_{(b \bmod a)}, F_{a}\right)$, and then prove that $\operatorname{gcd}\left(F_{a}, F_{b}\right)=F_{\operatorname{gcd}(a, b)}$.
