CS 70 Fall 2013

Discrete Mathematics and Probability Theory Week 3 Discussion

Modular Arithmetic

- 1. In class you learned how to compute gcd(a,b) using Euclid's algorithm. Now prove that for every number d such that d|a and d|b, we must have d|gcd(a,b). Try to provide a mathematically rigorous proof.
- 2. Find out whether the equation $51x = 1 \pmod{113}$ has a solution, and find one if it does. What about the equation $85x = 119 \pmod{221}$?
- 3. Prove that if $x = y \pmod{3}$ and $x = y \pmod{5}$ then $x = y \pmod{15}$.
- 4. Prove the following:
 - If $x = y \pmod{n}$ and $z = w \pmod{n}$ then $xz = yw \pmod{n}$.
 - If x has two modular inverses y and z mod n, then $y = z \pmod{n}$.
- 5. Prove that Fibonacci numbers mod n become periodic. Find an upper-bound on the length of the period as a function of n. Next, prove that if a|b then $F_a|F_b$. **Challenge:** first prove that $gcd(F_a, F_b) = gcd(F_{(b \mod a)}, F_a)$, and then prove that $gcd(F_a, F_b) = F_{gcd(a,b)}$.