Infinity and Uncountability

1. For each of the following functions from \mathbb{R} to \mathbb{R}, determine whether it is an injection, surjection, bijection, none of the above, or more than one of the above.
(a) $f(x)=2^{x}$
(b) $f(x)=x^{2}$
(c) $f(x)=2 x+1$
2. For each of the following sets, decide whether it is countable or uncountable, and justify your answer.
(a) The set of all prime numbers
(b) The set of all finite sequences of integers
(c) The set of all real numbers in the range $[0,0.1]$
(d) The set of all real numbers that are roots of polynomials with natural number coefficients
3. Prove that if A is uncountable and B is a countable subset of A, then $A-B$ is uncountable.
