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CS 70 Discrete Mathematics and Probability Theory
Fall 2013 Week 1 Discussion

Induction
Note: you should not worry at all if you weren’t able to get through these problems in section, or if you find

some of the problems (especially 3 and 4) very difficult. Exams will not contain questions which require as

much ingenuity as questions 3 or 4.

1. Prove that for all n ∈ N, 5 | 6
n −1.

Solution: Let an = 6
n −1. We prove 5 | an by induction on n.

Base case: a0 = 0, which is a multiple of 5.

Inductive hypothesis: Suppose 5 | an.

Inductive step: Note that an+1 − an = 6
n+1 − 6

n = 6
n (6−1). By the inductive hypothesis, we can

find k such that an = 5k. Then an+1 = 5k+6
n (6−1) = 5(k+6

n), so 5 | an..

2. In a certain nation, each president wants to show up their predecessors, and so makes more speeches

than all previous presidents combined. Assuming the first president makes at least one speech, prove

that the nth
president must make at least 2

n−1
speeches for each n ∈ N.

Solution: Let an be the number of speeches the nth
president makes. We will prove that an ≥ 2

n−1
by

strong induction on n.

Base case: By the problem statement, a1 ≥ 1 = 2
1−1

.

Inductive hypothesis: Suppose for each k ≤ n, ak ≥ 2
k−1

.

Inductive step: By the problem statement, an+1 > a1 + a2 + . . .+ an. Thus an+1 ≥ 1+ a1 + a2 +
. . .+an. By the inductive hypothesis, an+1 ≥ 1+1+2+ . . .+2

n−1
. We can then verify by a second

induction that this sum evaluates to 2
n
: for the base case note that 1+1 = 2

1
, and then for the indutive

step note that 2
n−1 +2

n−1 = 2
n
.

3. Suppose that you are interested in retrieving an object located in the middle of the desert, n kilometers

away. Your car can carry enough fuel to travel 3 kilometers, and you have an unlimited supply of

spare fuel tanks which you can use to leave deposits of fuel throughout the desert. Your starting point

has as much fuel as you want.

(a) Show that it is possible to retrieve the item and return it to your starting location by driving at

most 3
n

kilometers.

Solution: Let a unit of gas be the amount of gas necessary to travel 1 kilometer. Let pn be the

point n kilometers away from our starting location (the starting location itself is p0). We will

prove by induction that there is a strategy which starts and ends with the car at p0 and which

deposits 1 unit of gas at pn using only 3
n

units in total (including the unit left behind).

This is strictly stronger than the desired statement, because we could simply take the desired

item back with us on our last return from pn. Moreover, if we only use 3
n

units of gas then we

can only travel 3
n −1 kilometers (since we left one unit behind).



Base case: If n = 0, we can perform the task trivially just by taking our 3
0 = 1 unit of gas and

leaving it at our starting location.

Inductive hypothesis: Assume that we have a procedure A(n) which uses 3
n

units of gas, which

starts and ends with the car at p0, and which leaves 1 unit of gas at pn.

Inductive step: In order to leave 1 unit of gas at pn+1, we use the procedure A(n) three times,

to leave 3 units of gas at pn. However, the third time we run A we make a slight modification.

Consider the last time the car is at pn. At that time, there are 3 units of gas at pn. We modify

A(n) by storing the car’s current contents at pn and then refilling the car with those 3 units of

gas. We then use 1 of these units of gas to travel to pn+1, we leave 1 of these units at pn+1, and

we use 1 unit to return to pn. At this point we restock the car using the gas that we left at pn, and

then finish running A(n).
This protocol requires running A(n) three times, but uses no additional gas (recall that we

counted the 1 unit left behind in the 3
n

units of gas that A(n) uses). By induction, this pro-

tocol uses 3∗3
n = 3

n+1
units of gas. And it clearly leaves 1 unit of gas at pn+1, as desired.

Thus we can take all of the gas currently in the car and set it aside. We can then put those 3 units

of gas into our car, use one unit to travel one kilometer further, leave one unit at n+1 kilometers,

and use one unit to return to n

(b) For the adventurous: what is the minimal number of miles it is possible to travel in order to

retrieve the item?

Solution sketch: The key part of the analysis above was starting with 3 units of gas at pn and

then ending with 1 unit of gas at pn+1. However, we could have made a different tradeoff. For

example, we could have started with 3 units of gas at pn and travelled only
1

2
of a kilometer, to

end up with 2 units of gas at pn+ 1

2

. In general, we could move 3−2ε units of gas to pn+ε .

By the exact same analysis as in the last section, this change allows us to move the gas using

only (1− 2

3
ε)−n/ε

kilometers. For every small values of ε , this approaches exp
�

2

3
n
�
.

Proving this is (roughly) optimal involves much harder techniques, which you aren’t expected to

know (yet). Briefly: define the value of gasoline at px to be exp
�

2

3
x
�

per unit. We can prove that

driving the car can never increase the total value of our gasoline—the increase in the gasoline’s

value from carrying it away from the starting point is more than offset by the cost of the gasoline

that is consumed. Ending up with a unit of gasoline at pn means you end up with a total value of

at least exp
�

2

3
n
�
. Since driving the car doesn’t create value, you must have started with exp

�
2

3
n
�

value, i.e. you must have started with that much gas at the starting location.

(And to ever reach pn requires getting a unit of gas to pn−1. So this analysis is correct to within

a factor of exp
�

2

3

�
. I don’t know exactly how much gas you need...)

4. Suppose you have a calculator on which the only working keys are 3,6,9,(,),+,∗,−, and the decimal

point. Find a way to enter 1.7 into this calculator, or show that it is impossible.

Solution: We apply the well-ordering principle, together with strengthening the hypothesis. First we

observe that most of the expressions we can make seem to be “almost” a multiple of 3, but with a

decimal point added in. Experimenting and formalizing this observation, it seems like we can only

make numbers of the form
3k
10�

. Say that a number is of type P if it is of the form.

First, we’ll prove that 1.7 isn’t of type P. Suppose that 1.7 = 3k
10�

. First notice that � > 0, since 3k is

an integer and 1.7 is not. But if 1.7 is of the form
3k
10�

with � > 0, then 3k = 17 ∗ 10
�−1

. But 3 does

not divide 10
�−1

nor 17, and 3 divides a product if and only if it divides one of the factors. So this is

a contradiction, and 1.7 isn’t of type P.
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So we will be done if we can show that every number we can produce is of the form
3k
10�

. Say that a

number is of type P if it has this form. We apply the well-ordering principle, and consider the smallest

expression which we can enter which isn’t of type P.

This expresion is of one of four forms. We will show that any possibility leads to a contradiction:

(a) If the expression of the form a+ b for smaller expressions, then by hypothesis each of these

expressions is of type P, and the sum of two numbers of type P is also of type P.

3k
10�

+
3k�

10�
� =

3

�
k10

�� + k�10
�
�

10�+��
.

(b) Similarly if the expression is of the form a−b or a∗b.

(c) If the expresison is simply a number, consisting of the digits 3,6,9 and the decimal point, then

it is of the form

x = ∑
i

ai ∗10
i

with each ai equal to one of 3,6, or 9. But each summand is manifestly of type P, and as we saw

in part (a), a sum of terms of type P is also of type P.

So every number we can produce is of type P, but 1.7 isn’t, and so we cannot produce 1.7.

5. Let Fi be the ith Fibonacci number, defined by Fi+2 = Fi+1 +Fi and F0 = 0, F1 = 1. Prove that

n

∑
i=0

F2

i = FnFn+1

Solution: We proceed by induction on n.

Base case: ∑0

i=0
F2

i = F2

0
= 0 = F0F1

Inductive hypothesis: Suppose ∑n
i=0

F2

i = FnFn+1

Inductive step: We have

n+1

∑
i=0

F2

i = F2

n+1
+

n

∑
i=0

F2

i

= F2

n+1
+FnFn+1

= Fn+1 (Fn +Fn+1)

= Fn+1Fn+2

where the second equality is the inductive hypothesis and the last equality is the definition of the

Fibonacci numbers.
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