
CS 70 Discrete Mathematics and Probability Theory
Fall 2013 Week 4 Discussion

Polynomials
Note: you aren’t expected to complete even all of the non-challenge problems. Extra problems are included
to help with practice.

1. Suppose P(x) = x3 +2x+3 and Q(x) = x2 +4x+3.

(a) Simplify P(x)+Q(x) mod 5.
Solution.

P(x)+Q(x) = x3 +2x+3+ x2 +4x+3 = x3 + x2 +6x+6 ≡ x3 + x2 + x+1 (mod 5)

(b) Simplify P(x)∗Q(x) mod 5.
Solution.

P(x)∗Q(x) = (x3 +2x+3)(x2 +4x+3)
= x5 +2x3 +3x2 +4x4 +8x2 +12x+3x3 +6x+9
= x5 +4x4 +5x3 +16x2 +18x+9
≡ x5 +4x4 + x2 +3x+4 (mod 5)

(c) Can you simplify P(x)∗Q(x) further, using Fermat’s little theorem?
Solution. Recall Fermat’s little theorem says xp−1 ≡ 1 (mod p) if gcd(x, p) = 1. So it almost
looks like we could replace x4 with 1 – but that wouldn’t quite be right, since it fails when x ≡ 0.
However, for p prime the equivalence xp ≡ x (mod p) always holds; it clearly holds for x ≡ 0,
and for nonzero x it holds by multiplying both sides of Fermat’s little theorem by x. Therefore,
we can further simplfy x5 +4x4 + x2 +3x+4 to 4x4 + x2 +4x+4.

2. (a) Find a polynomial P of degree 1 such that P(2) = 4,P(4) = 2, mod 11.
Solution. Applying Lagrange interpolation,

∆2(x) =
x−4
2−4

=−2−1(x−4)

∆4(x) =
x−2
4−2

= 2−1(x−2)

Therefore,

P(x) = 4∆2(x)+2∆4(x)
= −4 ·2−1(x−4)+2 ·2−1(x−2)
= −2(x−4)+(x−2)
= −x+6
≡ 10x+6 (mod 11)
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(b) Find a polynomial P of degree 2 such that P(1) = 1,P(3) = 3,P(5) = 2, mod 7.
Solution. Applying Lagrange interpolation,

∆1(x) =
(x−3)(x−5)
(1−3)(1−5)

= 8−1(x−3)(x−5)≡ (x−3)(x−5) (mod 7)

∆3(x) =
(x−1)(x−5)
(3−1)(3−5)

= (−4)−1(x−1)(x−5)≡ 3−1(x−1)(x−5) (mod 7)

∆5(x) =
(x−1)(x−3)
(5−1)(5−3)

= 8−1(x−1)(x−3)≡ (x−1)(x−3) (mod 7)

Therefore,

P(x) ≡ 1∆1(x)+3∆3(x)+2∆5(x)
≡ (x−3)(x−5)+3 ·3−1(x−1)(x−5)+2(x−1)(x−3)
≡ x2 −8x+15+ x2 −6x+5+2(x2 −4x+3)
≡ 4x2 −22x+26
≡ 4x2 +6x+5 (mod 7)

(c) Find a polynomial P of degree 3 such that P(1) = 1,P(2) = 2,P(3) = 3,P(4) = 1, mod 5
Solution. Applying Lagrange interpolation,

∆1(x) =
(x−2)(x−3)(x−4)
(1−2)(1−3)(1−4)

= (−6)−1(x−2)(x−3)(x−4)≡−(x−2)(x−3)(x−4) (mod 5)

∆2(x) =
(x−1)(x−3)(x−4)
(2−1)(2−3)(2−4)

= 2−1(x−1)(x−3)(x−4)≡ 3(x−1)(x−3)(x−4) (mod 5)

∆3(x) =
(x−1)(x−2)(x−4)
(3−1)(3−2)(3−4)

=−2−1(x−1)(x−2)(x−4)≡−3(x−1)(x−2)(x−4) (mod 5)

∆4(x) =
(x−1)(x−2)(x−3)
(4−1)(4−2)(4−3)

= 6−1(x−1)(x−2)(x−3)≡ (x−1)(x−2)(x−3) (mod 5)

Therefore,

P(x) ≡ 1∆1(x)+2∆2(x)+3∆3(x)+1∆4(x)
≡ −(x−2)(x−3)(x−4)+6(x−1)(x−3)(x−4)−9(x−1)(x−2)(x−4)+(x−1)(x−2)(x−3)
≡ −3x3 +18x2 −27x+18
≡ 2x3 +3x2 +3x+3 (mod 5)

3. (a) Prove that a parabola and a line can intersect at most twice.
Solution. Recall a parabola is a degree-2 polynomial, while a line has degree ≤ 1. On the other
hand, two distinct degree-2 polynomials can agree on at most 2 points. Since a line and parabola
don’t agree everywhere, they can agree on at most 2 points.

(b) Prove that a parabola and a cubic can intersect at at most three times.
Solution. Recall a cubic is a degree-3 polynomial, while a parabola has degree 2. On the
other hand, two distinct degree-3 polynomials can agree on at most 3 points. Since a cubic and
parabola don’t agree everywhere, they can agree on at most 3 points.
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(c) Show that if you do Lagrange interpolation with d + 1 points you always recover the correct
polynomial, but if you do it with d points you might not (where d is the degree of the polyno-
mial).
Solution. For example, let d = 1, and suppose our single point is (0,0). There are many lines
that pass through (0,0); for example, P(x) = 0 and P(x) = x. So specifying only 1 point does
not completely characterize a line.

4. Challenge problem:

(a) Prove that for every polynomial P and every prime p, there exists a Q of degree at most p− 1
such that P(x) = Q(x) mod p for every x.

(b) If P and Q are distinct degree p−1 polynomials, show that P(x) �= Q(x) mod p for some x.

(c) Using the above facts, show that every function from {0,1, . . . , p−1} to {0,1, . . . , p−1} is
equivalent to some degree p−1 polynomial.

(d) Using Lagrange interpolation, show that every function from {0,1, . . . , p−1} to {0,1, . . . , p−1}
is equivalent to some degree p−1 polynomial.

5. Challenge problem: Given d+2 degree d polynomials P1,P2, . . . ,Pd+2, show that there exist numbers
a1,a2, . . .ad+2 ∈ {0, . . . , p−1} which are not all zero such that

a1P1(x)+a2P2(x)+ . . .+ad+2Pd+2(x) = 0 mod p

for every x.

6. Challenge problem:

(a) If P(k) is a degree d polynomial, show that P(k+1)−P(k) is a degree d −1 polynomial.

(b) Harder: If P(k) is a degree d polynomial, show that ∑n
k=1 P(k) is a degree d +1 polynomial in

n.
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