CS 70 Discrete Mathematics and Pro]oa]oility Theory
Fall 2013 Vazirani Note 1

Induction

Induction is a basic, powerful and widely used proof technique. It is one of the most common techniques for
analyzing programs: proving that they correctly compute the desired function on all inputs and analyzing
their running time as a function of input length. Let us start with an example of induction.

n(n+1)

Consider the statement: for all natural numbers n, 0+1+2+3+---+n = =5—. Using mathematical

n(n+1)

n
notation, we can formally write the statement as: Vn € N, Zi =

i=0
statement as follows: for all n in N (the set of natural numbers), the sum of i going from i =0 to n is @

. In plain english, we read this

How would you prove this statement? Of course you can substitute small values for n and check that it holds
for those cases. While this is a very good way to understand the statement, and often helps you gain insight
into why the statement might be true, it does not really prove that the statement holds for all natural numbers
n. For example, consider the statement ¥ € N, P(n) = n> —n+41 is a prime number. If you check the first
few inputs, you will find that the results are indeed prime. Indeed, you have to get all the way up to n = 41
before finding out that the statement is false!

n
1
Below we give a proof by induction that Vi € N, Z i= M

i=0
before, it might seem a bit strange to you. Do not worry! We will soon describe the intuitive picture behind
induction, as well as describe the general structure of an induction proof.

. If you have never seen an induction proof

- 1
Theorem: Vn c N, Zi: n(n+ )
i=0 2

Proof (by induction on n):

0
0(0+1
* Base Case: n =0: Zi:O: 0+ ) Correct.
i=0 2
k
k(k+1
* Inductive Hypothesis: Assume that Zi = ( ; )
i=0
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& (k+1)(k+2
* Inductive Step: Prove that it also holds for n = (k+ 1), i.e. Z i= w:

i=0 2

k+1 k
Y i=() i)+ (k+1)
i=0 i=0

k(k+1

= ( ; )—i—(k—H) (by the inductive hypothesis)
k
(k+1)(k+2)

Hence, by the principle of induction, the theorem holds. &

Let’s step back and look at the general form of such a proof, and also why it makes sense. Let us denote

n
1
by P(n) the statement Zi = @ So we wish to prove that Vn € N, P(n). The principle of induction
i=0

2
asserts that you can prove P(n) is true Vn € N, by following these three steps:

Base Case: Prove that P(0) is true.
Inductive Hypothesis: Assume that P(k) is true.

Inductive Step: Show that it follows that P(k+ 1) is true.

To understand why induction works, think of the statements P(n) as represented by a sequence of dominoes,
numbered from 0,1,2,...,n, such that P(0) corresponds to the 0" domino, P(1) corresponds to the 1%
domino, and so on. The dominoes are lined up so that if the k" domino is knocked over, then it in turn
knocks over the k + 1*. Knocking over the k' domino corresponds to proving P(k) is true. And the
induction step corresponds to the placement of the dominoes to ensure that if the ¥’ domino falls, in turn
it knocks over the k + 1* domino. The base case (n = 0) knocks over the Orh domino, setting off a chain
reaction that knocks down all the dominoes.

It is worth examining more closely the induction proof example above. To prove P(k + 1), we find within it

the statement P(k 0 i= Zz + (k+1). This is the key to the induction step.

f@@@

We will now look at another proof by induction, but first we will introduce some notation and a definition
for divisibility. ,if and
only if for some integer ¢, b = ag. In mathematical notation, Va, b € Z, alb iff 3g € 7 : b = aq.
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Theorem: Vn € N, n? —n is divisible by 3.

Proof (by induction over n): Let P(n) denote the statement Vn € N, n® — n is divisible by 3.

* Base Case: P(0) asserts that 3|(0° —0) or 3|0, which is true since non-zero integer divides 0. (In this
case,0 =3-0).

» Inductive Hypothesis: Assume P(k) is true. That is, 3|(k* — k), or 3g € Z,k> —k = 3q.

+ Inductive Step: We must show that P(k+ 1) is true, which asserts that 3|((k+1)° — (k+1)). Let us
expand this out:

(k+1)° —(k+1) =k +3k* +3k+1— (k+1)
= (K —k) +3k* + 3k
=3q+3(k>+k), g€ Z (by the inductive hypothesis)
=3(q+k* +k)

So 3|((k+1)3 — (k+1)).
Hence, by the principle of induction, Vn € N, 3|(n> —n). #

There is a clever direct proof without any induction for the above statement. Can you see it?

Two Color Theorem: There is a famous theorem called the four color theorem. It states that any map
can be colored with four colors such that any two adjacent countries (which share a border, but not just
a point) must have different colors. The four color theorem is very difficult to prove, and several bogus
proofs were claimed since the problem was first posed in 1852. It was not until 1976 that the theorem was
finally proved (with the aid of a computer) by Appel and Haken. (For an interesting history of the problem,
and a state-of-the-art proof, which is nonetheless still very challenging, see www.math.gatech.edu/
$\sim$thomas/FC/fourcolor.html). We consider a simpler scenario, where we divide the plane
into regions by drawing lines, where each line divides the plane into two regions (i.e. it extends to infinity).
We want to know if we can color this map using no more than two colors (say, red and blue) such that no
two regions that share a boundary have the same color. Here is an example of a two-colored map:

We will prove this “two color theorem" by induction on n, the number of lines:

* Base Case: Prove that P(0) is true, which is the proposition that a map with n = 0 lines can be can be
colored using no more than two colors. But this is easy, since we can just color the entire plane using
one color.
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* Inductive Hypothesis: Assume P(n). That is, a map with n lines can be two-colored.

* Inductive Step: Prove P(n+ 1). We are given a map with n+ 1 lines and wish to show that it can be
two-colored. Let’s see what happens if we remove a line. With only 7 lines on the plane, we know
we can two-color the map (by the inductive hypothesis). Let us make the following observation: if
we swap red < blue, we still have a two-coloring. With this in mind, let us place back the line we
removed, and leave colors on one side of the line unchanged. On the other side of the line, swap red
<> blue. We claim that this is a valid two-coloring for the map with n+ 1 lines.

A
R B

e
r
B R
r
L

Why does this work? Any border of a region either consists of a part of one of the original n lines or
a piece of the n+ 1-st line. If it is a part of one of the original # lines, then the two regions on either
side are both on the same side of the n + 1-st line, and the colors of the regions must be distinct, by
the induction hypothesis. On the other hand, if the border is part of the n + 1-th line, then the two
regions were created by dividing a single region from the induction hypothesis, and by construction
we reversed colors on one side of the line, and so they have opposite colors. &

Induction is a very powerful technique. But you will need to exercise care while using it, since even small
errors can lead to proving ridiculously false statements. Here is a dramatic example: in the middle of the
last century, a colloquial expression in common use was “that is a horse of a different color", referring to
something that is quite different from normal or common expectation. The famous mathematician George
Polya (who was also a great expositor of mathematics for the lay public) gave the following proof to show
that there is no horse of a different color!

Theorem: All horses are the same color.

Proof (by induction on the number of horses):

» Base Case: P(1) is certainly true, since if you have a set containing just one horse, all horses in the
set have the same color.

* Inductive Hypothesis: Assume P(n), which is the statement that in any set of n horses, they all have
the same color.

* Inductive Step: Given a set of n+ 1 horses {hy,ha,...,h,+1}, we can exclude the last horse in the set
and apply the inductive hypothesis just to the first n horses {hi,...,h,}, deducing that they all have
the same color. Similarly, we can conclude that the last n horses {hy,...,h,+1} all have the same
color. But now the “middle” horses {h,...,h,} (i.e., all but the first and the last) belong to both of
these sets, so they have the same color as horse /; and horse 4,1 1. It follows, therefore, that all n+ 1
horses have the same color. Thus, by the principle of induction, all horses have the same color. &

Clearly, it is not true that all horses are of the same color, so where did we go wrong in our induction proof?
It is tempting to blame the induction hypothesis — which is clearly false. But the whole point of induction
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is that if the base case is true (which it is in this case), and assuming the induction hypothesis for any n we
can prove the case n+ 1, then the statement is true for all n. So what we are looking for is a flaw in the
reasoning!

What makes the flaw in this proof a little tricky to spot is that the induction step is valid for a “typical” value
of n, say, n = 3. The flaw, however, is in the induction step when n = 1. In this case, for n+ 1 = 2 horses,
there are no “middle” horses, and so the argument completely breaks down!

Strengthening the Inductive Hypothesis

Let us prove by induction the following proposition:
Theorem: Vn > 1, the sum of the first n odd numbers is a perfect square.

Proof: By induction on .

* Base Case: n = 1. The first odd number is 1, which is a perfect square.

« Inductive Hypothesis: Assume that the sum of the first k odd numbers is a perfect square, say m?.

* Inductive Step: The k+ 1-th odd number is 2k + 1, so by the induction hypothesis, the sum of the first
k+ 1 odd numbers is m? + 2k + 1. But now we are stuck. Why should m? +2k + 1 be a perfect square?

Well, let’s just take a detour and compute the values of the first few cases. Maybe we will identify another
pattern.

e n=1:1=1%1is a perfect square.
e n=2:1+3=4=22is a perfect square.
e n=23:1+43+5=9=23?%is a perfect square.

s n=4:14+3+5+7=16=4%is a perfect square.

Wait, isn’t there a pattern where the sum of the first n odd numbers is just n>? Here is an idea: let us show

something stronger!
Theorem: For all n > 1, the sum of the first n odd numbers is n2.

Proof: By induction on #.

 Base Case: n = 1. The first odd number is 1, which is 12.

» Inductive Hypothesis: Assume that the sum of the first k odd numbers is k.
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* Inductive Step: The (k+ 1)-st odd number is 2k + 1, so by the induction hypothesis the sum of the
first k + 1 odd numbers is k> + (2k + 1) = (k+ 1)%. Thus by the principle of induction the theorem
holds. &

See if you can understand what happened here. We could not prove a proposition, so we proved a harder
proposition instead! Can you see why that can sometimes be easier when you are doing a proof by induction?
When you are trying to prove a stronger statement by induction, you have to show something harder in the
induction step, but you also get to assume something stronger in the induction hypothesis. Sometimes the
stronger assumption helps you reach just that much further...

Here is another example:

Imagine that we are given L-shaped tiles (i.e., a 2 x 2 square tile with a missing 1 x 1 square), and we want
to know if we can tile a 2" x 2" courtyard with a missing 1 x 1 square in the middle. Here is an example of
a successful tiling in the case that n = 2:

Let us try to prove the proposition by induction on .

* Base Case: Prove P(1). This is the proposition that a 2 x 2 courtyard can be tiled with L-shaped tiles
with a missing 1 x 1 square in the middle. But this is easy:

* Inductive Hypothesis: Assume P(n) is true. That is, we can tile a 2" x 2" courtyard with a missing
1 x 1 square in the middle.

+ Inductive Step: We want to show that we can tile a 2"*! x 2"*! courtyard with a missing 1 x 1 square in
the middle. Let’s try to reduce this problem so we can apply our inductive hypothesis. A 2+! x 27+1
courtyard can be broken up into four smaller courtyards of size 2" x 2", each with a missing 1 x 1
square as follows:

2 2

—!

But the holes are not in the middle of each 2" x 2" courtyard, so the inductive hypothesis does not
help! How should we proceed? We should strengthen our inductive hypothesis!

What we are about to do is completely counter-intuitive. It’s like attempting to lift 100 pounds, failing, and
then saying “I couldn’t lift 100 pounds. Let me try to lift 200," and then succeeding! Instead of proving that
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we can tile a 2" x 2" courtyard with a hole in the middle, we will try to prove something stronger: that we
can tile the courtyard with the hole being anywhere we choose. It is a trade-off: we have to prove more, but
we also get to assume a stronger hypothesis. The base case is the same, so we will just work on the inductive
hypothesis and step.

* Inductive Hypothesis (second attempt): Assume P(n) is true, so that we can tile a 2" x 2" courtyard
with a missing 1 x 1 square anywhere.

+ Inductive Step (second attempt): As before, we can break up the 2”1 x 2"*+! courtyard as follows.
I Il

v
> | i
B

By placing the first tile as shown, we get four 2" x 2" courtyards, each with a 1 x 1 hole; three of
these courtyards have the hole in one corner, while the fourth has the hole in a position determined by
the hole in the 2"*! x 2"*! courtyard. The stronger inductive hypothesis now applies to each of these
four courtyards, so that each of them can be successfully tiled. Thus, we have proven that we can tile
a 2"+ % 271 courtyard with a hole anywhere! Hence, by the induction principle, we have proved the
(stronger) theorem. &

Strong Induction

Strong induction is very similar to simple induction, with the exception of the inductive hypothesis. With
strong induction, instead of just assuming P(k) is true, you assume the stronger statement that P(0), P(1),
..., and P(k) are all true (i.e., P(0) AP(1) A--- A P(k) is true, or in more compact notation \X_, P(i) is true).
Strong induction sometimes makes the proof of the inductive step much easier since we get to assume a
stronger statement, as illustrated in the next example.

Theorem: Every natural number n > 1 can be written as a product of primes.
Recall that a number n > 2 is prime if 1 and n are its only divisors. Let P(n) be the proposition that n can be
written as a product of primes. We will prove that P(n) is true for all n > 2.

* Base Case: We start at n = 2. Clearly P(2) holds, since 2 is a prime number.

* Inductive Hypothesis: Assume P(k) is true for 2 < k < n: i.e., every number k : 2 < k < n can be
written as a product of primes.

* Inductive Step: We must show that n+ 1 can be written as a product of primes. We have two cases:
either n+ 1 is a prime number, or it is not. For the first case, if n+ 1 is a prime number, then we
are done. For the second case, if n+ 1 is not a prime number, then by definition n+ 1 = xy, where
x,y € ZT and 1 < x,y < n+ 1. By the inductive hypothesis, x and y can each be written as a product
of primes (since x,y < n). Therefore, n+ 1 can also be written as a product of primes. &
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Why does this proof fail if we were to use simple induction? If we only assume P(n) is true, then we cannot
apply our inductive hypothesis to x and y. For example, if we were trying to prove P(42), we might write
42 = 6 x 7, and then it is useful to know that P(6) and P(7) are true. However, with simple induction, we
could only assume P(41), i.e., that 41 can be written as a product of primes — a fact that is not useful in
establishing P(42).

To understand why strong induction works, let’s think about our domino analogy. By the time we ready
for the k + 1-st domino to fall, dominoes numbered O through k have already been knocked over. But this
is exactly what strong induction assumes: to prove P(k+ 1), we can assume we already know that P(0)
through P(k) are true.

Simple Induction vs. Strong Induction

We have seen that strong induction makes certain proofs easy when simple induction seems to fail. A natural
question to ask then, is whether the strong induction axiom is logically stronger than the simple induction
axiom. In fact, the two methods of induction are logically equivalent. Clearly anything that can be proven by
simple induction can also be proven by strong induction (convince yourself of this!). For the other direction,
suppose we can prove by strong induction that Vn P(n). Let Q(k) = P(0) A--- AP(k). Let us prove Vk Q(k)
by simple induction. The proof is modeled after the strong induction proof of Vn P(n). That is, we want
to show Q(k) = Q(k+ 1), or equivalently P(O) A--- AP(k) = P(0) A--- AP(k) AP(k+1). But this is
true iff P(0) A--- AP(k) = P(k+1). This is exactly what the strong induction proof of Vn P(n) establishes!
Therefore, we can establish Vn Q(n) by simple induction. And clearly, proving Vn Q(n) also proves Vn P(n).

Well Ordering Princip]e

In the context of proving statement about algorithms or programs, it is often convenient to formulate an
induction proof in a different way. We start by asking how the statement Vn € N, P(n) could fail? Well,
it means that there must be some values of n for which P(n) is false. Let m be the smallest such natural
number. We know that m must be greater than 0 since P(0) is true (base case), which indicates m — 1 € N.
Since m is the smallest input that makes P(m) false, P(m — 1) must be true. But P(m — 1) — P(m), which is
a contradiction.

We assumed something when defining m that is usually taken for granted: that we can actually find a smallest
number in any subset of natural numbers. This property does not hold for, say, the real numbers; to see why,
consider the set {x € R: 0 < x < 1}. For every number y in this set, we can always find a smaller one, e.g.

/2.

Formally, this property of natural numbers is called the well-ordering principle:

Well ordering principle: If S C N and S # 0, then S has a smallest element.

So the above argument by contradiction gives a valid alternative way of doing a proof by induction. In
this form we start as before by proving the base case. But then we assume for contradiction that there is a
smallest counterexample P(k) (the well-ordering principle gives us a right to make this assumption). Now
we show that this leads to a contradiction, thus completing the proof.
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Let’s look at an example.

Round robin tournament: Suppose that, in a round robin tournament, we have a set of k players {p1, p2,..., Pk}
such that p; beats p,, p» beats ps, ..., pr—1 beats py, and p; beats p;. This is called a cycle in the tourna-
ment:

LN
v

%F‘j

(A round robin tournament is a tournament where each participant plays every other contestant exactly once.
Thus, if there are n players, there will be exactly @ matches. Also, we are assuming that every match
ends in either a win or a loss; no ties.)

Claim: If there exists a cycle in a tournament, then there exists a cycle of length 3.

Proof: For the base case, notice that we cannot have a cycle of length less than 3, and if there is a cycle of
length 3 then the proposition is true.

Assume for contradiction that the smallest cycle is:

pn/l pl\'p
|I‘\ /2

\__pj

with n > 3. Let us look at the game between p; and p3. We have two cases: either p3 beats p;, or p; beats
p3. In the first case (where p3 beats p;), then we are done because we have a 3-cycle. In the second case
(where p; beats p3), we have a shorter cycle {ps, pa,...,p,} and thus a contradiction. Therefore, if there
exists a cycle, then there must exist a 3-cycle as well. &

Case 1 Case 2

pl\ p p
\ ot |

Can we prove this claim using more traditional induction? Let us start with the base case of n = 3 players
and proceed from there.

Proof: By induction on #.

e Base Case: As above.

* Inductive Hypothesis: If a round-robin tournament has a cycle of length k then it has a cycle of length
3.
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* Inductive Step: Given a round-robin tournament with a cycle of length k£ + 1, we wish to show there
must be a 3-cycle. Assume wlog that the cycle involves players p; through py.; in that order. Consider
the outcome of the match between p; and ps3. If p3 beats p; then we have a 3-cycle. If p; beats ps,
there is a k-cycle that goes directly from p(1) p(3) and continues as before. Applying the induction
hypothesis, we conclude that there must be a 3-cycle in the tournament. &

Induetion and Recursion

There is an intimate connection between induction and recursion in mathematics and computer science. A
recursive definition of a function over the natural numbers specifies the value of the function at small values
of n, and defines the value of f(n) for a general n in terms of the value of f(m) for m < n. Let us consider
the example of the Fibonacci numbers, defined in a puzzle by Fibonacci (in the year 1202).

Fibonacci’s puzzle: Starting with a pair of rabbits, how many rabbits do you end up with at the end of the
year, if it is supposed that every month each pair begets a new pair which from the second month on becomes
productive?

Let F(n) denote the number of pairs of rabbits in month n. According to the above specification, the initial
conditions are F(0) = 0 and, when the pair of rabbits is introduced, F(1) = 1. Also F(2) = 1, since the
pair is not yet productive. In month 3, according to the conditions, the pair of rabbits begets a new pair. So
F(3) =2. What about F (n) for a general value of n? This is a little tricky to figure out unless you look at it
the right way. The number of pairs in month n— 1 is F(n— 1). Of these how many were productive? Only
those that were alive in the previous month - i.e. F'(n—2) of them. Thus there are F(n — 2) new pairs in the
n-th month, in addition to the F(n — 1) already in existence. So F(n) = F(n— 1)+ F(n—2). This completes
the recursive definition of F(n):

e F(0)=0,and F(1) =1

e Forn>2,F(n)=F(n—1)+F(n—2)

This admittedly simple model of population growth nevertheless illustrates a fundamental principle. Left
unchecked, populations grow exponentially over time. [Exercise: can you show, for example, that F(n) >
2(=1/2 for all n > 3?] Understanding the significance of this unchecked exponential population growth was
a key step that led Darwin to formulate his theory of evolution. To quote Darwin: “There is no exception to
the rule that every organic being increases at so high a rate, that if not destroyed, the earth would soon be
covered by the progeny of a single pair."

Be sure you understand that a recursive definition is not circular — even though in the above example F(n)
is defined in terms of the function F, there is a clear ordering which makes everything well-defined. Here is
a recursive program to evaluate F (n):

function F (n)
if n=0 then return 0
if n=1 then return 1
else return F(n-1) + F(n-2)

CS 70, Fall 2013, Note 1 10



Can you figure out how long this program takes to compute F(n)? This is a very inefficient way to compute
the n-th Fibonacci number. A much faster way is to turn this into an iterative algorithm (this should be a
familiar example of turning a tail-recursion into an iterative algorithm):

function Fj(n)
if n=0 then return 0
if n=1 then return 1
a =1
b =20
for k = 2 to n do
temp = a
a=a+b
b = temp
return a

Can you show by induction that this new function F>(n) = F(n)? How long does this program take to
compute F(n)?

Clearly, induction and recursion are closely related. In fact, proofs involving a recursively-defined concept,
e.g. factorial, are often best done using induction. Formally, the factorial of a nonnegative number 7 is
defined recursively as n! =n(n—1)(n—2)...1, with a base case 0! = 1, whereas exponentiation is defined
recursively as X" = x"~'x. In this next example, we will look at is an inequality between two functions of 7.
Such inequalities are useful in computer science when showing that one algorithm is more efficient than
another.

Notice that for this example, we have chosen as our base case n = 2 rather than n = 0. This is because the
statement is trivially true for n < 2.

Theorem: Vne N, n>1—n! <n".

Proof (by induction over n):

» Base Case: P(2) asserts that 2! < 22, or 2 < 4, which is clearly true.
* Inductive Hypothesis: Assume P(n) is true (i.e., n! < n").

* Inductive Step: We must show P(n+ 1), which states that (n+1)! < (n+ 1)""!. Let us begin with
the left side of the inequality:

(n+1)!=(n+1)-n!
<(n+1)-n" (by the inductive hypothesis)
<(n+1)-(n+1)"
— (n+ 1)n+1

Hence, by the induction principle, Vn € N, if n > 1, then n! < n". &
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Practice Pro]olems

1. Prove for any natural number n that 12 +22+3%+...+n? = In(n+1)(2n+1).
2. Prove that 3" > 2" for all natural numbers n > 1.

3. In real analysis, Bernoulli’s Inequality is an inequality which approximates the exponentiations of
1 + x. Prove this inequality, which states that (14 x)" > 1+ nx if n is a natural number and 1 +x > 0.
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