CS 70 Discrete Mathematics and Pro]oalaility Theory
Fall 2013 Vazirani Note 11

Two Killer Applications: Hashing and Load Balaneing

In this lecture, we will see two “killer apps” of elementary probability in Computer Science. The first is a
basic question about hash functions:

» Suppose a hash function distributes keys evenly over a table of size n. How many keys can we hash
before the probability of a collision exceeds (say) %?

As we shall see, this question can be tackled by an analysis of the balls-and-bins probability space which
we have already encountered.

Recall that a hash table is a data structure that supports the storage of a set of keys drawn from a large
universe U (say, the names of all 250m people in the US). The set of keys to be stored changes over time,
and so the data structure allows keys to be added and deleted quickly. It also rapidly answers given a key
whether it is an element in the currently stored set. The crucial question is how large must the hash table be
to allow these operations (addition, deletion and membership) to be implemented quickly.

Here is how the hashing works. The hash function 2 maps U to a table T of modest size. To ADD a key x
to our set, we evaluate A(x) (i.e., apply the hash function to the key) and store x at the location %(x) in the
table 7. All keys in our set that are mapped to the same table location are stored in a simple linked list. The
operations DELETE and MEMBER are implemented in similar fashion, by evaluating A(x) and searching the
linked list at 4(x). Note that the efficiency of a hash function depends on having only few collisions — i.e.,
keys that map to the same location. This is because the search time for DELETE and MEMBER operations is
proportional to the length of the corresponding linked list.

Of course, we could be unlucky and choose keys such that our hash function maps many of them to the same
location in the table. But the whole idea behind hashing is that we select our hash function carefully, so that
it scrambles up the input key and seems to map it to a random location in the table, making it unlikely that
most of the keys we select are mapped to the same location. To quantitatively understand this phenomenon,
we will model our hash function as a random function - one that maps each key to a uniformly random
location in the table, independently of where all other keys are mapped. The question we will answer is the
following: what is the largest number, m, of keys we can store before the probability of a collision reaches %?
Note that there is nothing special about % One can ask, and answer, the same question with different values,
and the largest number of keys m will change accordingly.

Balls and Bins

Let’s begin by seeing how this problem can be put into the balls and bins framework. The balls will be the m
keys to be stored, and the bins will be the n locations in the hash table 7. Since the hash function maps each
key to a random location in the table 7', we can see each key (ball) as choosing a hash table location (bin)
uniformly and independently from 7'. Thus the probability space corresponding to this hashing experiment
is exactly the same as the balls and bins space.

CS 70, Fall 2013, Note 11

s

We are interested in the event A that there is no collision, or equivalently, that all m balls land in different
bins. Clearly Pr[A] will decrease as m increases (with n fixed). Our goal is to find the largest value of m
such that Pr[A] remains above % [Note: Really we are looking at different sample spaces here, one for each
value of m. So it would be more correct to write Pr,, rather than just Pr, to make clear which sample space
we are talking about. However, we will omit this detail.]

Using the union bound

Let us see how to use the union bound to achieve this goal. We will fix the value of m and try to compute
Pr[A]. There are exactly k = ("21) = w possible pairs among our m keys. Imagine these are numbered
from 1 to (’;’) (it doesn’t matter how). Let A; denote the event that pair i has a collision (i.e., both are hashed
to the same location). Then the event A that some collision occurs can be written A = Uﬁ-‘zlAi. What is
Pr[A;]? We claim it is just % for every i; this is just the probability that two particular balls land in the same

bin.

So, using the union bound from the last lecture, we have

=~

Pr[K]g. Pr[A,-]:kxl:M ?

m
/ n 2n on’

This means that the probability of having a collision is less than % provided ’g—j < %, i.e., provided m < \/n.
Thus, if we wish to suffer no collisions, the size of the hash table must be about the square of the cardinality
of the set we are trying to store. We will see in the next section on load balancing that the number of
collisions does not increase dramatically as we decrease the size of the hash table and make it comparable
to the size of the set we are trying to store.

It turns out we can derive a slightly less restrictive bound for m using other techniques from the past several
lectures. Although this alternate bound is a little better, both bounds are the same in terms of dependence on
n (both are of the form m = O(y/n)). If you are interested in the alternate derivation, please read the section
at the end of this note.

The]oirthday paradox revisited

Recall from a previous lecture the birthday “paradox”: what is the probability that, in a group of m people,
two people have the same birthday? The problem we have solved above is a closely related generalization
of the birthday problem: each bin represents a possible birthday (so there are 365 bins) and the balls are the
people, and we want to know the largest number of people so the chance of two with the same birthday is
smaller than 1/2 (in the birthday problem we were interested in knowing the smallest number of people so
the chance of two with the same birthday is greater than 1,/2). We can plug in values into the above equation
to find that at n = 365, the probability of collision drops below % when m < 19.

Application 2: Load balancing

An important practical issue in distributed computing is how to spread the workload in a distributed system
among its processors. Here we investigate an extremely simple scenario that is both fundamental in its own
right and also establishes a baseline against which more sophisticated methods should be judged.

Suppose we have m identical jobs and » identical processors. Our task is to assign the jobs to the processors
in such a way that no processor is too heavily loaded. Of course, there is a simple optimal solution here: just

CS 70, Fall 2013, Note 11 2

divide up the jobs as evenly as possible, so that each processor receives either [or | | jobs. However, this
solution requires a lot of centralized control, and/or a lot of communication: the workload has to be balanced
evenly either by a powerful centralized scheduler that talks to all the processors, or by the exchange of many
messages between jobs and processors. This kind of operation is very costly in most distributed systems.

The question therefore is: What can we do with little or no overhead in scheduling and communication cost?

Back to Balls and Bins

The first idea that comes to mind here is. . . balls and bins! In other words, each job simply selects a processor
uniformly at random and independently of all others, and goes to that processor. (Make sure you believe
that the probability space for this experiment is the same as the one for balls and bins.) This scheme requires
no communication. However, presumably it won’t in general achieve an optimal balancing of the load. Let
Ay, be the event that the load of some processor is at least k. As designers or users of this load balancing
scheme, here’s one question we might care about:

Question: Find the smallest value k such that Pr[A;] < 3.

If we have such a value k, then we’ll know that, with good probability (at least %), every processor in our
system will have a load at most k. This will give us a good idea about the performance of the system. Of
course, as with our hashing application, there’s nothing special about the value %; we’re just using this for
illustration. As you can check later (if you choose to read the optional section below), essentially the same
analysis can be used to find k such that Pr[A;] < 0.05 (i.e., 95% confidence), or any other value we like.
Indeed, we can even find the k’s for several different confidence levels and thus build up a more detailed
picture of the behavior of the scheme. To simplify our problem, we’ll also assume from now on that m = n
(i.e., the number of jobs is the same as the number of processors). With a bit more work, we could generalize
our analysis to other values of m.

Applying the Union Bound

From Application 1 we know that we get collisions already when m =~ 1.177,/n. So when m = n the
maximum load will certainly be larger than 1 (with good probability). But how large will it be? If we try to
analyze the maximum load directly, we run into the problem that it depends on the number of jobs at every
processor (or equivalently, the number of balls in every bin). Since the load in one bin depends on those in
the others, this becomes very tricky. Instead, what we’ll do is analyze the load in any one bin, say bin 1; this
will be fairly easy. Let Ag(1) be the event that the load in bin 1 is at least k. What we’ll do is find & such
that

PriAc(1)] < 5. (1)

Since all the bins are identical, we will then know that, for the same k,
PriA(i)] < 5= fori=1,2,...,n,

where Ay (i) is the event that the load in bin i is at least k. But now, since the event Ay is exactly the union of
the events Ay (i) (do you see why?), we can use the “Union Bound” from the previous lecture:

Pr{A;] = Pr{Ui Ax(i)]
1

<nXxX_—
2n

= S

CS 70, Fall 2013, Note 11 3

It’s worth standing back to notice what we did here: we wanted to conclude that Pr[A;] < % We couldn’t
analyze Ay directly, but we knew that Ay = |J/_; Ax(i), for much simpler events A (i). Since there are n
events A(i), and all have the same probability, it is enough for us to show that Pr[A,(i)] < 5-; the union
bound then guarantees that Pr[A;] < % This kind of reasoning is very common in applications of probability

in Computer Science.

Now all that’s left to do is find k which satisfies equation ??. i.e. we wish to bound the probability that bin 1
has at least & balls (and find a value of k so that this probability is smaller than 1/2n). We start by observing
that for the event A (1) to occur (that bin 1 has at least & balls), there must be some subset S of exactly k
balls such that all balls in S ended up in bin 1. We can say this more formally as follows: for a subset §
(where |S| = k), let Bs be the event that all balls in |S| land in bin 1. Then the event A (1) is a subset of the
event UgBg (where the union is over all sets S of cardinality k). It follows that:

Pr[Ak(l)] < PI'[UsBs]
We can use the union bound on Pr[UgBg]:

PI'[UsBs] < Z PI'[BS]
N

There are (Z) sets we are summing over, and for each set S, Pr[Bg] is simple: it is just the probability that

k balls land in bin 1, or # Using these observations and the above equations, we can compute an upper
bound on Pr[A;(1)]:
n\ 1
Pr[Ax(1)] < —
< ()
Now to satisfy our original goal (equation ??), we just need to choose k so that (Z) 1 <L But we have

2n
n\1 nn-1)-(n—k+1)1
— <
k) nk k! nk —

1
k!

Setting k! = 2n, and simplifying we get that (é)k = 2n. Taking logs we get that k(Ink — 1) = In2n. This
Inn

gives a value of k of roughly 7.

If you would like to learn more about how to do this, please refer to the additional section on load balancing
below.

Finally, here is one punchline from Application 2. Let’s say the total US population is about 250 million.
Suppose we mail 250 million items of junk mail, each one with a random US address. Then (see the optional
section below for more details) with probability at least % no one person anywhere will receive more than
about a dozen items!

More About Hashing (Optiona])

Please read on only if interested. In this section, we will derive the alternate bound described in the hashing
section above.

Main Idea

Let’s fix the value of m and try to compute Pr[A]. Since our probability space is uniform (each outcome has
probability ,%m), it’s enough just to count the number of outcomes in A. In how many ways can we arrange m

CS 70, Fall 2013, Note 11 4

balls in # bins so that no bin contains more than one ball? Well, this is just the number of ways of choosing
m things out of n without replacement, which as we saw in Note 10 is

nx(n—1)xn=2)x--x(n—m+2)x (n—m+1).
This formula is valid as long as m < n: if m > n then clearly the answer is zero. From now on, we’ll assume
that m < n.
Now we can calculate the probability of no collision:
nn—1)(n—2)...(n—m+1)
nﬂ’l

n—1 n-2 n—m+1

X Xeeoe X m4 ™ ——

n n n

_ <1—%)x(1—%>xmx<l—m;1>.)

Before going on, let’s pause to observe that we could compute Pr[A] in a different way, as follows. View the
probability space as a sequence of choices, one for each ball. For 1 <i <m, let A; be the event that the ith
ball lands in a different bin from balls 1,2,...,i— 1. Then

Pr[A] =

n
- X
n

Pr[A] =Pr[NL,Ai] = Pr]A1] xPr[A;|A;] x Pr[A3]A; NA2] x -+ X Pr[Amm?glAi]
n—1 n-2 n—m+1
= 1x X X X ——————
n n n

SO R RS

Fortunately, we get the same answer as before! [You should make sure you see how we obtained the
conditional probabilities in the second line above. For example, Pr[A3|A| NA;] is the probability that the
third ball lands in a different bin from the first two balls, given that those two balls also landed in different
bins. This means that the third ball has n — 2 possible bin choices out of a total of 7.]

Essentially, we are now done with our problem: equation (??) gives an exact formula for the probability of
no collision when m keys are hashed. All we need to do now is plug values m = 1,2,3,... into (??) until we
find that Pr[A] drops below % The corresponding value of m (minus 1) is what we want.

We can actually make this bound much more useful by turning it around, as we will do below. We will derive
an equation which tells us the value of m at which Pr[A] drops below % It turns out that if m is smaller than
approximately 1.177/n, the probability of a collision will be less than %

Further Simpliﬁcation

The bound we gave above (for the largest number m of keys we can store before the probability of a collision
reaches %) is not really satisfactory: it would be much more useful to have a formula that gives the “critical”
value of m directly, rather than having to compute Pr[A] for m = 1,2,3,.... Note that we would have to do
this computation separately for each different value of n we are interested in: i.e., whenever we change the
size of our hash table.

So what remains is to “turn equation (??) around”, so that it tells us the value of m at which Pr[A] drops
below % To do this, let’s take logs: this is a good thing to do because it turns the product into a sum, which
is easier to handle. We get

In(Pr[4]) = 1n(1 —%) +1n(1 —%) ot (1- 10 1), 3)

n

CS 70, Fall 2013, Note 11 5

where “In” denotes natural (base e) logarithm. Now we can make use of a standard approximation for
logarithms: namely, if x is small then In(1 — x) &~ —x. This comes from the Taylor series expansion

2 X

In(l—-x)=—x————=— e
n(l —x) X-5 -3
So by replacing In(1 —x) by —x we are making an error of at most (% + %3 +--+), which is at most 2x*> when
x < % In other words, we have

—x>1In(1—x) > —x—2x%.
And if x is small then the error term 2x> will be much smaller than the main term —x. Rather than carry
around the error term 2x? everywhere, in what follows we’ll just write In(1 — x) &~ —x, secure in the knowl-
edge that we could make this approximation precise if necessary.

Now let’s plug this approximation into equation (??):

In(PriA]) ~ ———=-—-=— e —

~
~

“)

—5
Note that we’ve used the approximation for In(1 —x) withx =1 2 3 m—1

33y 0= So our approximation should
be good provided all these are small, i.e., provided # is fairly big and m is quite a bit smaller than n. Once

we’re done, we’ll see that the approximation is actually pretty good even for modest sizes of n.

Now we can undo the logs in (2?) to get our expression for Pr[A]:
m
PriA] e 2.
The final step is to figure out for what value of m this probability becomes % So we want the largest m such

2
m .
thate 2« > % This means we must have

2

m 1
o > ln(i) = —1In2, &)
or equivalently

m < +/(2In2)n=~1.177/n. (6)

So the bottom line is that we can hash approximately m = | 1.177./n] keys before the probability of a colli-

sion reaches %

Recall that our calculation was only approximate; so we should go back and get a feel for how much error
we made. We can do this by using equation (??) to compute the exact value m = my at which Pr[A] drops
below % for a few sample values of n. Then we can compare these values with our estimate m = 1.177,/n.

n] 10 20 50 100 200 365 500 1000 10* 10° 10°
1.177/n | 3.7 53 83 11.8 166 225 263 373 118 372 1177
exactmg | 4 5 8 12 16 22 26 37 118 372 1177

From the table, we see that our approximation is very good even for small values of n. When n is large, the
error in the approximation becomes negligible.

CS 70, Fall 2013, Note 11 6

As mentioned above, we could consider values other than % What we did above was to (approximately)
compute Pr[A] (the probability of no collision) as a function of m, and then find the largest value of m for
1

which our estimate is smaller than 5. If instead we were interested in keeping the collision probability

below (say) 0.05 (= 5%), we could derive that we could hash at most m = /(2In(20/19))n ~ 0.321/n keys.
Of course, this number is a bit smaller than before because our collision probability is now smaller. But
no matter what “confidence” probability we specify, our critical value of m will always be c¢y/n for some
constant ¢ (which depends on the confidence).

More About Load Balancing (Optional)

In this section, we’ll come up with a slightly tighter bound for k£ and we will also show how to choose k so
that the probability of an overloaded processor is less than %

We’ll start with an alternate calculation of Pr[A(1)]. Let C;(1) be the event that the number of balls in bin
1 is exactly j. It’s not hard to write down an exact expression for Pr[C;(1)]]:

n j n—j
pric] = () (1 (=) g
This can be seen by viewing each ball as a biased coin toss: Heads corresponds to the ball landing in bin 1,
Tails to all other outcomes. So the Heads probability is %; and all coin tosses are (mutually) independent.
As we saw in earlier lectures, (??) gives the probability of exactly j Heads in n tosses.

Thus we have

n n n . .

Pr{Ac(1)] = Y Pric;(1)] =} <) (1) (1=, (8)
=k =k N

Now in some sense we are done: we could try plugging values k = 1,2,... into (??) until the probability

drops below z—ln However, it is also possible to massage equation (??) into a cleaner form from which we

can read off the value of k more directly. We will need to do a few calculations and approximations:

()@ a-y

Pr{Ac(1)]

™= I

Il
I}

IN

Il
1=
/N
~.l0
N—
~.

(©))

)l
Iy

In the second line here, we used the standard approximation' (%)J < (']l) < (”Te)/ . Also, we tossed away the

(1— %)"*j term, which is permissible because doing so can only increase the value of the sum (i.e., since
(1— %)”‘j < 1). It will turn out that we didn’t lose too much by applying these bounds.

'Computer scientists and mathematicians carry around a little bag of tricks for replacing complicated expressions like (';) with
simpler approximations. This is just one of these. It isn’t too hard to prove the lower bound, i.e., that (;’) > (?)j . The upper bound

is a bit trickier, and makes use of another approximation for n! known as Stirling’s approximation, which implies that j! > (é)f .
We won’t discuss the details here.

CS 70, Fall 2013, Note 11 7

Now we’re already down to a much cleaner form in (??). To finish up, we just need to sum the series. Again,
we’ll make an approximation to simplify our task, and hope that it doesn’t cost us too much. The terms in
the series in (??) go down at each step by a factor of at least 7. So we can bound the series by a geometric
series, which is easy to sum:

S J ! 2 k

Y(5) =@ (e ()) <2 (10)
]:

where the second inequality holds provided we assume that k > 2e (which it will be, as we shall see in a

moment).

So what we have now shown is the following:
k
PriAg(1)] <2(3) (11)

(provided k > 2¢). Note that, even though we have made a few approximations, inequality (??) is completely
valid: all our approximations were “<”, so we always have an upper bound on Pr[X; > k|. [You should go
back through all the steps and check this.]

Recall from (??) that our goal is to make the probability in (??) less than 217 We can ensure this by

choosing k so that
k
()" <z (12)

Now we are in good shape: given any value n for the number of jobs/processors, we just need to find the
smallest value k = ko that satisfies inequality (??). We will then know that, with probability at least %, the
maximum load on any processor is at most ky. The table below shows the values of kg for some sample
values of n. It is recommended that you perform the experiment and compare these values of ko with what

happens in practice.

n] 10 20 50 100 500 1000 10* 10° 10° 107 108 100
exactkp | 6 6 71 7 8 8 9 10 11 12 13 19
In(4n) | 3.7 44 53 60 7.6 83 106 139 152 175 198 36

2 | 56 54 58 60 68 72 82 94 106 11.6 126 20

Inlnn

Can we come up with a formula for k¢ as a function of n (as we did for the hashing problem)? Well, let’s
take logs in (??):
k(Ink—1) > In(4n). (13)

From this, we might guess that k = In(4n) is a good value for k¢. Plugging in this value of k makes the left-
hand side of (??) equal to In(4n)(Inln(4n) — 1), which is certainly bigger than In(4n) provided Inln(4n) > 2,
ie.,n> %eez ~ 405. So for n > 405 we can claim that the maximum load is (with probability at least %)
no larger than In(4n). The table above plots the values of In(4n) for comparison with kp. As expected, the
estimate is quite good for small n, but becomes rather pessimistic when # is large.

For large n we can do better as follows. If we plug the value k = hllr;:n into the left-hand side of (??), it

becomes

Inn
Inlnn

Ininl 1
(Inlnn—1Inlnlnn—1) = Inp (1 — 2202 E 1) (14)
Inlnn
Now when n is large this is just barely smaller than the right-hand side, In(4n). Why? Because the second

term inside the parentheses goes to zero as n — ,? and because In(4n) = Inn +In4, which is very close to

Inz+1
Zz

2To see this, note that it is of the form Inz+1l \where z = Inln n, and of course

z

—0asz—oo.

CS 70, Fall 2013, Note 11 8

Inn when n is large (since In4 is a fixed small constant). So we can conclude that, for large values of n, the

quantity hllrl‘;’n should be a pretty good estimate of ky. Actually for this estimate to become good » has to be

(literally) astronomically large. For more civilized values of n, we get a better estimate by taking k = 1311]‘:1’:1 .

The extra factor of 2 helps to wipe out the lower order terms (i.e., the second term in the parenthesis in (??)
and the In4) more quickly. The table above also shows the behavior of this estimate for various values of .

CS 70, Fall 2013, Note 11 9

